These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6761340)

  • 41. Lack of competition between cytochrome c and anthraquinone type drugs for the reductive sites of NADH dehydrogenase.
    Tarasiuk J; Garnier-Suillerot A; Borowski E
    Biochem Pharmacol; 1989 Jul; 38(14):2285-9. PubMed ID: 2546562
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amino acid sequence of NADH-cytochrome b5 reductase of human erythrocytes.
    Yubisui T; Miyata T; Iwanaga S; Tamura M; Yoshida S; Takeshita M; Nakajima H
    J Biochem; 1984 Aug; 96(2):579-82. PubMed ID: 6389526
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Membrane cooperative enzymes: interplay of insulin, glucagon and epinephrine on rat erythrocyte acetylcholinesterase system.
    De Mellián EM; Massa EM; Morero RD; Farias RN
    FEBS Lett; 1978 Aug; 92(1):143-6. PubMed ID: 668916
    [No Abstract]   [Full Text] [Related]  

  • 44. Purification and properties of soluble NADH-cytochrome b5 reductase of rabbit erythrocytes.
    Yubisui T; Takeshita M
    J Biochem; 1982 May; 91(5):1467-77. PubMed ID: 7096301
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gastric microsomal NADH-cytochrome b5 reductase: characterization and solubilization.
    Ghesquier D; Robert JC; Soumarmon A; Abastado M; Grelac F; Lewin MJ
    Comp Biochem Physiol B; 1985; 80(1):165-9. PubMed ID: 3967486
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resealing to small solutes of white erythrocyte membranes after incubation with EDTA, Ca2+, salt, sucrose, phospholipase C.
    Moore RB; Manery JF
    Arch Biochem Biophys; 1981 Oct; 211(1):179-91. PubMed ID: 6795994
    [No Abstract]   [Full Text] [Related]  

  • 47. Exponential decay of cytochrome b5 and cytochrome b5 reductase during senescence of erythrocytes: relation to the increased methemoglobin content.
    Takeshita M; Tamura M; Yubisui T; Yoneyama Y
    J Biochem; 1983 Mar; 93(3):931-4. PubMed ID: 6874674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intracellular flavonoids as electron donors for extracellular ferricyanide reduction in human erythrocytes.
    Fiorani M; De Sanctis R; De Bellis R; Dachà M
    Free Radic Biol Med; 2002 Jan; 32(1):64-72. PubMed ID: 11755318
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D; La Piana G; Cafagno L; Fransvea E; Lofrumento NE
    Arch Biochem Biophys; 1995 May; 319(1):36-48. PubMed ID: 7771804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitroreductase activity of NADH dehydrogenase of the respiratory redox chain.
    Smyth GE; Orsi BA
    Biochem J; 1989 Feb; 257(3):859-63. PubMed ID: 2494990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NADH-monodehydroascorbate reductase in human erythrocyte membranes.
    Goldenberg H; Grebing C; Löw H
    Biochem Int; 1983 Jan; 6(1):1-9. PubMed ID: 6679313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Structural modification of erythrocyte membranes during oxidative stress and activity of membrane bound NADH-methemoglobin reductase].
    Slobozhanina EI; Luk'ianenko LM; Kozlova NM
    Biofizika; 2000; 45(2):288-92. PubMed ID: 10776542
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bis(alkylamino)anthracenedione antineoplastic agent metabolic activation by NADPH-cytochrome P-450 reductase and NADH dehydrogenase: diminished activity relative to anthracyclines.
    Kharasch ED; Novak RF
    Arch Biochem Biophys; 1983 Jul; 224(2):682-94. PubMed ID: 6408991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transmembrane Electron Transport in Plasma Membrane Vesicles Loaded with an NADH-Generating System or Ascorbate.
    Askerlund P; Larsson C
    Plant Physiol; 1991 Aug; 96(4):1178-84. PubMed ID: 16668317
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Steady-state kinetics of low molecular weight (type-II) NADH dehydrogenase.
    Dooijewaard G; Slater EC
    Biochim Biophys Acta; 1976 Jul; 440(1):16-35. PubMed ID: 181090
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phospholipase A2 from sheep erythrocyte membranes. Ca2+ dependence and localization.
    Frei E; Zahler P
    Biochim Biophys Acta; 1979 Feb; 550(3):450-63. PubMed ID: 420827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activity of membrane-bound NADH-methemoglobin reductase and physical state of lipids in erythrocyte membranes.
    Lukyanenko LM; Kozlova NM; Slobozhanina EI
    Bioelectrochemistry; 2004 May; 62(2):191-3. PubMed ID: 15039026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Purification and characterization of two forms of soluble NADH cytochrome b5 reductases from human erythrocytes.
    Arinç E; Güray T; Saplakoğlu U; Adali O
    Comp Biochem Physiol B; 1992; 101(1-2):235-42. PubMed ID: 1499270
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Potentiometric study of redox systems of human erythrocytes using potassium ferricyanide].
    Balmukhanov BS; Zamula SV; Ataullakhanov FI
    Biokhimiia; 1980 May; 45(5):945-9. PubMed ID: 7378513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nicotinamide-adenine dinucleotide-methemoglobin reductase activity in erythrocytes from cats.
    Baker DC; Gaunt SD
    Am J Vet Res; 1985 Jun; 46(6):1354-5. PubMed ID: 4026013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.