BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6761651)

  • 1. Nuclear Overhauser effect study of yeast tRNAVal 1: evidence for uridine-pseudouridine base pairing.
    Schejter E; Roy S; Sánchez V; Redfield AG
    Nucleic Acids Res; 1982 Dec; 10(24):8297-305. PubMed ID: 6761651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Procedure for C2 deuteration of nucleic acids and determination of A psi 31 pseudouridine conformation by nuclear Overhauser effect in yeast tRNAPhe.
    Roy S; Papastavros MZ; Redfield AG
    Nucleic Acids Res; 1982 Dec; 10(24):8341-9. PubMed ID: 6761652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear overhauser effect study of yeast aspartate transfer ribonucleic acid.
    Roy S; Papastavros MZ; Redfield AG
    Biochemistry; 1982 Nov; 21(24):6081-8. PubMed ID: 6758844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear Overhauser effect study and assignment of D stem and reverse-Hoogsteen base pair proton resonances in yeast tRNAAsp.
    Roy S; Redfield AG
    Nucleic Acids Res; 1981 Dec; 9(24):7073-83. PubMed ID: 6278454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear Overhauser effect in specifically deuterated macromolecules: NMR assay for unusual base pairing in transfer RNA.
    Sánchez V; Redfield AG; Johnston PD; Tropp J
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5659-62. PubMed ID: 7003592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imino-proton resonances of yeast tRNAPhe studied by two-dimensional nuclear Overhauser enhancement spectroscopy.
    Heerschap A; Mellema JR; Janssen HG; Walters JA; Haasnoot CA; Hilbers CW
    Eur J Biochem; 1985 Jun; 149(3):649-55. PubMed ID: 2988955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance and nuclear Overhauser effect study of yeast phenylalanine transfer ribonucleic acid imino protons.
    Johnston PD; Redfield AG
    Biochemistry; 1981 Mar; 20(5):1147-56. PubMed ID: 7013786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations between fluorine-19 nuclear magnetic resonance chemical shift and the secondary and tertiary structure of 5-fluorouracil-substituted tRNA.
    Chu WC; Kintanar A; Horowitz J
    J Mol Biol; 1992 Oct; 227(4):1173-81. PubMed ID: 1279181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assignment of the magnetic resonances of the imino protons and methyl protons of Bombyx mori tRNA(GlyGCC) and the effect of ion binding on its structure.
    Amano M; Kawakami M
    Eur J Biochem; 1992 Dec; 210(3):671-81. PubMed ID: 1483452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear Overhauser assignment of the imino protons of the acceptor helix and the ribothymidine helix in the nuclear magnetic resonance spectrum of Escherichia coli isoleucine transfer ribonucleic acid: evidence for costacked helices in solution.
    Hare DR; Reid BR
    Biochemistry; 1982 Oct; 21(21):5129-35. PubMed ID: 6756467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assignment of imino proton spectra of yeast phenylalanine transfer ribonucleic acid.
    Roy S; Redfield AG
    Biochemistry; 1983 Mar; 22(6):1386-90. PubMed ID: 6301547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR spectroscopy of the ring nitrogen protons of uracil and substituted uracils; relevance to A psi base pairing in the solution structure of transfer RNA.
    Hurd RE; Reid BR
    Nucleic Acids Res; 1977 Aug; 4(8):2747-55. PubMed ID: 907730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance studies on yeast tRNAPhe. III. Assignments of the iminoproton resonances of the tertiary structure by means of nuclear Overhauser effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1983 Jul; 11(13):4501-20. PubMed ID: 6346269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the nucleotide sequence of pseudouridine-containing 5S RNA from Saccharomyces cerevisiae.
    Miyazaki M
    J Biochem; 1974 Jun; 75(6):1407-10. PubMed ID: 4609984
    [No Abstract]   [Full Text] [Related]  

  • 16. Proton exchange rates in transfer RNA as a function of spermidine and magnesium.
    Tropp JS; Redfield AG
    Nucleic Acids Res; 1983 Apr; 11(7):2121-34. PubMed ID: 6340067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 15N-labeled Escherichia coli tRNAfMet, tRNAGlu, tRNATyr, and tRNAPhe. Double resonance and two-dimensional NMR of N1-labeled pseudouridine.
    Griffey RH; Davis D; Yamaizumi Z; Nishimura S; Bax A; Hawkins B; Poulter CD
    J Biol Chem; 1985 Aug; 260(17):9734-41. PubMed ID: 3894360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies on yeast tRNAPhe I. Assignment of the iminoproton resonances of the acceptor and D stem by means of Nuclear Overhauser Effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1982 Nov; 10(21):6981-7000. PubMed ID: 6757870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct assignment of the dihydrouridine-helix imino proton resonances in transfer ribonucleic acid nuclear magnetic resonance spectra by means of the nuclear Overhauser effect.
    Hare DR; Reid BR
    Biochemistry; 1982 Apr; 21(8):1835-42. PubMed ID: 6282322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.