These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6765028)

  • 1. Comparison of in vitro proteolysis products of the normal human lens with putative in vivo proteolysis products of the cataractous lens.
    Takemoto LJ; Hansen JS; Horwitz J
    Curr Eye Res; 1982-1983; 2(12):849-54. PubMed ID: 6765028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presence of low molecular weight polypeptides in human brunescent cataracts.
    Horwitz J; Hansen JS; Cheung CC; Ding LL; Straatsma BR; Lightfoot DO; Takemoto LJ
    Biochem Biophys Res Commun; 1983 May; 113(1):65-71. PubMed ID: 6860343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical analysis of microdissected sections from the normal and cataractous human lens.
    Takemoto LJ; Hansen JS; Horwitz J
    Curr Eye Res; 1982-1983; 2(7):443-50. PubMed ID: 7182105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of microdissected cataractous human lenses.
    Horwitz J; Neuhaus R; Dockstader J
    Invest Ophthalmol Vis Sci; 1981 Oct; 21(4):616-9. PubMed ID: 7287351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermolecular disulfide bonding of lens membrane proteins during human cataractogenesis.
    Takemoto LJ; Hansen JS
    Invest Ophthalmol Vis Sci; 1982 Mar; 22(3):336-42. PubMed ID: 7061206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Messenger RNA for cataractous lens proteins are also present on normal lens polyribosomes.
    Weill JC; Leca G; Vincent A; Civelli O; Pouliquen Y
    Eur J Biochem; 1980 Oct; 111(2):593-601. PubMed ID: 6161809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical evidence for membrane disintegration in human cataracts.
    Garner MH; Roy D; Rosenfeld L; Garner WH; Spector A
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1892-5. PubMed ID: 6785760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunochemical characterization of the major low molecular weight polypeptide (10K) from human cataractous lenses.
    Takemoto L; Straatsma B; Horwitz J
    Exp Eye Res; 1989 Feb; 48(2):261-70. PubMed ID: 2466675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR).
    Inomata M; Nomura K; Takehana M; Saido TC; Kawashima S; Shumiya S
    Biochim Biophys Acta; 1997 Nov; 1362(1):11-23. PubMed ID: 9434095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectra of normal and ultraviolet-induced cataractous rabbit lens.
    Thomas DM; Schepler KL
    Invest Ophthalmol Vis Sci; 1980 Aug; 19(8):904-12. PubMed ID: 7409985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drevogenin D prevents selenite-induced oxidative stress and calpain activation in cultured rat lens.
    Biju PG; Rooban BN; Lija Y; Devi VG; Sahasranamam V; Abraham A
    Mol Vis; 2007 Jul; 13():1121-9. PubMed ID: 17653057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-activated proteolysis in the lens nucleus during selenite cataractogenesis.
    David LL; Shearer TR
    Invest Ophthalmol Vis Sci; 1984 Nov; 25(11):1275-83. PubMed ID: 6386740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens.
    Saxena P; Saxena AK; Monnier VM
    Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing.
    Babizhayev MA
    Biochim Biophys Acta; 1996 Mar; 1315(2):87-99. PubMed ID: 8608175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide mapping by limited proteolysis in sodium dodecyl sulfate of the main intrinsic polypeptides isolated from human and bovine lens plasma membranes.
    Horwitz J; Wong MM
    Biochim Biophys Acta; 1980 Mar; 622(1):134-43. PubMed ID: 6988013
    [No Abstract]   [Full Text] [Related]  

  • 17. Reduced glutathione levels in human normal and cataractous lens.
    Singh K; Chadha MR; Bhatia A
    Indian J Ophthalmol; 1981 Dec; 29(4):321-3. PubMed ID: 7346451
    [No Abstract]   [Full Text] [Related]  

  • 18. Antisera to synthetic peptides of MIP26K as probes of changes in opaque vs. transparent regions within the same human cataractous lens.
    Takemoto L; Kodama T; Takemoto D
    Exp Eye Res; 1987 Jul; 45(1):179-83. PubMed ID: 3653285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human alpha-crystallin-III isolation and characterization of protein from normal infant lenses and old lens peripheries.
    Roy D; Spector A
    Invest Ophthalmol; 1976 May; 15(5):394-9. PubMed ID: 1262170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins.
    Kodama T; Wong R; Takemoto L
    Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.