These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 6765028)
21. Modifications to rat lens major intrinsic protein in selenite-induced cataract. Schey KL; Fowler JG; Shearer TR; David L Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):657-67. PubMed ID: 10067969 [TBL] [Abstract][Full Text] [Related]
22. Analysis of tryptic peptides from the C-terminal region of alpha-crystallin from cataractous and normal human lenses. Takemoto LJ; Emmons T; Granstrom D; Griffin PR; Shabanowitz J; Hunt DF Exp Eye Res; 1990 Jun; 50(6):695-702. PubMed ID: 2373163 [TBL] [Abstract][Full Text] [Related]
23. Isolation of coloured peptides from cataractous lens proteins. Truscott RJ; Langenberg E; Louis WJ J Chromatogr; 1986 Jan; 374(1):137-42. PubMed ID: 3949921 [No Abstract] [Full Text] [Related]
24. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens. Kodama T; Kodama T; Horwitz J; Takemoto L Jpn J Ophthalmol; 1990; 34(1):44-52. PubMed ID: 2362373 [TBL] [Abstract][Full Text] [Related]
25. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. David LL; Azuma M; Shearer TR Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740 [TBL] [Abstract][Full Text] [Related]
26. Aminoguanidine-treatment results in the inhibition of lens opacification and calpain-mediated proteolysis in Shumiya cataract rats (SCR). Inomata M; Hayashi M; Shumiya S; Kawashima S; Ito Y J Biochem; 2000 Nov; 128(5):771-6. PubMed ID: 11056389 [TBL] [Abstract][Full Text] [Related]
27. Analysis of lipid peroxidation and electron microscopic survey of maturation stages during human cataractogenesis: pharmacokinetic assay of Can-C N-acetylcarnosine prodrug lubricant eye drops for cataract prevention. Babizhayev MA Drugs R D; 2005; 6(6):345-69. PubMed ID: 16274259 [TBL] [Abstract][Full Text] [Related]
28. [Peptidase activity of normal crystalline lens and of cataractous crystalline lens]. DE BERARDINIS E Ann Ottalmol Clin Ocul; 1950 Mar; 76(3):91-8. PubMed ID: 15413882 [No Abstract] [Full Text] [Related]
29. Origin of urea-soluble protein in the selenite cataract. Role of beta-crystallin proteolysis and calpain II. David LL; Dickey BM; Shearer TR Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1148-56. PubMed ID: 3036741 [TBL] [Abstract][Full Text] [Related]
30. Ergothioneine content in normal and senile human cataractous lenses. Shukla Y; Kulshrestha OP; Khuteta KP Indian J Med Res; 1981 Mar; 73():472-3. PubMed ID: 7275246 [No Abstract] [Full Text] [Related]
31. Changes in the permeability of the lens capsule in senile cataract. Fisher RF Trans Ophthalmol Soc U K (1962); 1977 Apr; 97(1):100-3. PubMed ID: 271370 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of advanced glycation end-products in diabetic and inherited canine cataracts. Bras ID; Colitz CM; Kusewitt DF; Chandler H; Lu P; Gemensky-Metzler AJ; Wilkie DA Graefes Arch Clin Exp Ophthalmol; 2007 Feb; 245(2):249-57. PubMed ID: 16896921 [TBL] [Abstract][Full Text] [Related]
33. Telomere-dependent senescent phenotype of lens epithelial cells as a biological marker of aging and cataractogenesis: the role of oxidative stress intensity and specific mechanism of phospholipid hydroperoxide toxicity in lens and aqueous. Babizhayev MA; Vishnyakova KS; Yegorov YE Fundam Clin Pharmacol; 2011 Apr; 25(2):139-62. PubMed ID: 20412312 [TBL] [Abstract][Full Text] [Related]
34. The localization of 43K polypeptide in normal and cataractous lenses by immunofluorescence. Farnsworth PN; Spector A; Lozier JR; Shyne SE; Garner MH; Garner WH Exp Eye Res; 1981 Mar; 32(3):257-64. PubMed ID: 7014233 [No Abstract] [Full Text] [Related]
35. Calpain II induced insolubilization of lens beta-crystallin polypeptides may induce cataract. David LL; Wright JW; Shearer TR Biochim Biophys Acta; 1992 Jul; 1139(3):210-6. PubMed ID: 1627659 [TBL] [Abstract][Full Text] [Related]
36. Modelling cortical cataractogenesis: 2. In vitro effects on the lens of agents preventing glucose- and sorbitol-induced cataracts. Trevithick JR; Creighton MO; Ross WM; Stewart-DeHaan PJ; Sanwal M Can J Ophthalmol; 1981 Jan; 16(1):32-8. PubMed ID: 7470986 [No Abstract] [Full Text] [Related]
37. Polypeptides of the lens fibre cell intracellular matrix. Katar M; Lo WK; Nagpal M; Maisel H Experientia; 1980 Apr; 36(4):416-8. PubMed ID: 6966581 [TBL] [Abstract][Full Text] [Related]
38. Characterization of peptide inducing cataractogenesis in lens of hereditary cataractous rat (ICR/f RAT). Kamei A; Sakai H Jpn J Ophthalmol; 1989; 33(3):348-57. PubMed ID: 2552201 [TBL] [Abstract][Full Text] [Related]
39. Characterization of polypeptides from human nuclear cataracts by Western blot analysis. Takemoto LJ; Hansen JS; Zigler JS; Horwitz J Exp Eye Res; 1985 Feb; 40(2):205-12. PubMed ID: 3979461 [TBL] [Abstract][Full Text] [Related]
40. [Study of exopeptidase and leucine enkephalin-like substances in the cataractous human lens]. Hasumi K; Kaya K; Nakazima A; Hasato T Nippon Ganka Gakkai Zasshi; 1987 May; 91(5):559-64. PubMed ID: 3310552 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]