These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 6765939)

  • 21. E. coli mutant pleiotropically defective in the export of secreted proteins.
    Oliver DB; Beckwith J
    Cell; 1981 Sep; 25(3):765-72. PubMed ID: 7026050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aspects of maltose transport in Escherichia coli: established facts and educated guesses.
    Boos W
    Ann Microbiol (Paris); 1982 Jan; 133A(1):145-51. PubMed ID: 7041737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Tsr chemosensory transducer of Escherichia coli assembles into the cytoplasmic membrane via a SecA-dependent process.
    Gebert JF; Overhoff B; Manson MD; Boos W
    J Biol Chem; 1988 Nov; 263(32):16652-60. PubMed ID: 2846545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the mature protein sequence of maltose-binding protein in its secretion across the E. coli cytoplasmic membrane.
    Ito K; Beckwith JR
    Cell; 1981 Jul; 25(1):143-50. PubMed ID: 7023692
    [No Abstract]   [Full Text] [Related]  

  • 25. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus.
    Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V
    J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium-induced permeabilization of the outer membrane: a method for reconstitution of periplasmic binding protein-dependent transport systems in Escherichia coli and Salmonella typhimurium.
    Brass JM
    Methods Enzymol; 1986; 125():289-302. PubMed ID: 3520224
    [No Abstract]   [Full Text] [Related]  

  • 27. Interaction between maltose-binding protein and the membrane-associated maltose transporter complex in Escherichia coli.
    Dean DA; Hor LI; Shuman HA; Nikaido H
    Mol Microbiol; 1992 Aug; 6(15):2033-40. PubMed ID: 1406246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methyl-alpha-maltoside and 5-thiomaltose: analogs transported by the Escherichia coli maltose transport system.
    Ferenci T
    J Bacteriol; 1980 Oct; 144(1):7-11. PubMed ID: 6998971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased expression of the bifunctional protein PrlF suppresses overproduction lethality associated with exported beta-galactosidase hybrid proteins in Escherichia coli.
    Kiino DR; Phillips GJ; Silhavy TJ
    J Bacteriol; 1990 Jan; 172(1):185-92. PubMed ID: 2152898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The hydrophobic domain of cytochrome b5 is capable of anchoring beta-galactosidase in Escherichia coli membranes.
    George SK; Najera L; Sandoval RP; Countryman C; Davis RW; Ihler GM
    J Bacteriol; 1989 Sep; 171(9):4569-76. PubMed ID: 2504691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli.
    Davidson AL; Sharma S
    J Bacteriol; 1997 Sep; 179(17):5458-64. PubMed ID: 9287001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Homologies between integral proteins of the inner membrane of binding protein transport systems in enterobacteria].
    Dassa E; Hofnung M
    Ann Inst Pasteur Microbiol (1985); 1985; 136A(3):281-8. PubMed ID: 3901876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dominant constitutive mutations in malT, the positive regulator gene of the maltose regulon in Escherichia coli.
    Débarbouillé M; Shuman HA; Silhavy TJ; Schwartz M
    J Mol Biol; 1978 Sep; 124(2):359-71. PubMed ID: 101676
    [No Abstract]   [Full Text] [Related]  

  • 34. Preparation and reconstitution of membrane-associated maltose transporter complex of Escherichia coli.
    Hall JA; Davidson AL; Nikaido H
    Methods Enzymol; 1998; 292():20-9. PubMed ID: 9711543
    [No Abstract]   [Full Text] [Related]  

  • 35. Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein.
    Manson MD; Boos W; Bassford PJ; Rasmussen BA
    J Biol Chem; 1985 Aug; 260(17):9727-33. PubMed ID: 3894359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of gene fusions to study the expression of malT the positive regulator gene of the maltose regulon.
    Debarbouille M; Schwartz M
    J Mol Biol; 1979 Aug; 132(3):521-34. PubMed ID: 118263
    [No Abstract]   [Full Text] [Related]  

  • 37. The role of the periplasmic maltose-binding protein and the outer-membrane phage lambda receptor in maltodextrin transport of Escherichia coli.
    Ferenci T; Brass J; Boos W
    Biochem Soc Trans; 1980 Dec; 8(6):680-1. PubMed ID: 6450701
    [No Abstract]   [Full Text] [Related]  

  • 38. Binding-protein-mediated transport systems in Escherichia coli.
    Boos W
    Biochem Soc Trans; 1984 Apr; 12(2):141-6. PubMed ID: 6373428
    [No Abstract]   [Full Text] [Related]  

  • 39. Energy-coupling of the transport system of Escherichia coli dependent on maltose-binding protein.
    Ferenci T; Boos W; Schwartz M; Szmelcman S
    Eur J Biochem; 1977 May; 75(1):187-93. PubMed ID: 140802
    [No Abstract]   [Full Text] [Related]  

  • 40. Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli: implications for mal gene regulation, inducer exclusion, and subunit assembly.
    Böhm A; Diez J; Diederichs K; Welte W; Boos W
    J Biol Chem; 2002 Feb; 277(5):3708-17. PubMed ID: 11709552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.