These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6766136)

  • 1. The structure and aminoacylation of a temperature-sensitive tRNATrp (Escherichia coli).
    Eisenberg SP; Yarus M
    J Biol Chem; 1980 Feb; 255(3):1128-37. PubMed ID: 6766136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The purification and sequence of a temperature-sensitive tryptophan tRNA.
    Eisenberg SP; Soll L; Yarus M
    J Biol Chem; 1979 Jun; 254(12):5562-6. PubMed ID: 109437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression.
    Vacher J; Grosjean H; Houssier C; Buckingham RH
    J Mol Biol; 1984 Aug; 177(2):329-42. PubMed ID: 6379198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No correlation between native and denatured forms of tRNA(Trp) form Escherichia coli and the resistant and sensitive molecules characterised by phosphorolysis. Two classes of conformation characterised by phosphorolysis in both native and denatured tRNA(Trp).
    Thang MN; Buckingham RH; Dondon L
    Eur J Biochem; 1975 May; 54(1):93-6. PubMed ID: 1097252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of tryptophan tRNA from wheat germ.
    Ghosh K; Ghosh HP
    Nucleic Acids Res; 1984 Jun; 12(12):4997-5003. PubMed ID: 6377237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the structural change induced in tRNA fMET (Escherichia coli) by acidic pH.
    Bina-Stein M; Crothers DM
    Biochemistry; 1975 Sep; 14(19):4185-91. PubMed ID: 241372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro conversion of a methionine to a glutamine-acceptor tRNA.
    Schulman LH; Pelka H
    Biochemistry; 1985 Dec; 24(25):7309-14. PubMed ID: 3910101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: essential elements for recognition of tRNA substrates within the anticodon stem-loop.
    Soderberg T; Poulter CD
    Biochemistry; 2000 May; 39(21):6546-53. PubMed ID: 10828971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tertiary structure of animal tRNATrp in solution and interaction of tRNATrp with tryptophanyl-tRNA synthetase.
    Garret M; Labouesse B; Litvak S; Romby P; Ebel JP; Giegé R
    Eur J Biochem; 1984 Jan; 138(1):67-75. PubMed ID: 6559132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorine-19 nuclear magnetic resonance as a probe of the solution structure of mutants of 5-fluorouracil-substituted Escherichia coli valine tRNA.
    Chu WC; Feiz V; Derrick WB; Horowitz J
    J Mol Biol; 1992 Oct; 227(4):1164-72. PubMed ID: 1279180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification study of aminoacyl-tRNA conformation.
    Negishi K; Nishimura S; Harada F; Hayatsu H
    Nucleic Acids Res; 1979 Mar; 6(3):899-914. PubMed ID: 375199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription termination in the Escherichia coli ribosomal RNA operon rrnC.
    Young RA
    J Biol Chem; 1979 Dec; 254(24):12725-31. PubMed ID: 115888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The primer tRNA for Moloney murine leukemia virus DNA synthesis. Nucleotide sequence and aminoacylation of tRNAPro.
    Harada F; Peters GG; Dahlberg JE
    J Biol Chem; 1979 Nov; 254(21):10979-85. PubMed ID: 115865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation of Escherichia coli glutamic acid tRNA II as studied by hydrogen-tritium exchange catalyzed by cysteine methyl ester.
    Eur J Biochem; 1976 Apr; 64(1):27-34. PubMed ID: 6269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticodon-anticodon interactions in solution. Studies of the self-association of yeast or Escherichia coli tRNAAsp and of their interactions with Escherichia coli tRNAVal.
    Romby P; Giegé R; Houssier C; Grosjean H
    J Mol Biol; 1985 Jul; 184(1):107-118. PubMed ID: 2411934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli.
    Mandal N; Mangroo D; Dalluge JJ; McCloskey JA; Rajbhandary UL
    RNA; 1996 May; 2(5):473-82. PubMed ID: 8665414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on T. utilis tRNATyr variants with enzymatically altered D-loop sequences. I. Deletion of the conserved sequence Gm-G and its effects on aminoacylation and conformation.
    Ohyama T; Nishikawa K; Takemura S
    J Biochem; 1985 Jan; 97(1):29-36. PubMed ID: 3922963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and dynamic aspects of recognition between tRNAs and aminoacyl-tRNA synthetases.
    Knorre DG; Vlassov VV
    Mol Biol Biochem Biophys; 1980; 32():278-300. PubMed ID: 7003348
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.