BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 6766458)

  • 1. Stimulation by vasopressin and alpha-catecholamines of phosphatidylinositol formation in isolated rat liver parenchymal cells.
    Tolbert ME; White AC; Aspry K; Cutts J; Fain JN
    J Biol Chem; 1980 Mar; 255(5):1938-44. PubMed ID: 6766458
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphatidylinositol metabolism in rat hepatocytes stimulated by vasopressin.
    Kirk CJ; Michell RH; Hems DA
    Biochem J; 1981 Jan; 194(1):155-65. PubMed ID: 7030316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hormonal stimulation of mitochondrial glutaminase. Effects of vasopressin, angiotensin II, adrenaline and glucagon.
    Corvera S; García-Sáinz JA
    Biochem J; 1983 Mar; 210(3):957-60. PubMed ID: 6870814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secretagogue-induced formation of inositol phosphates in rat exocrine pancreas. Implications for a messenger role for inositol trisphosphate.
    Rubin RP; Godfrey PP; Chapman DA; Putney JW
    Biochem J; 1984 Apr; 219(2):655-9. PubMed ID: 6611151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of inositol and tri-iodothyronine on the hormonal responsiveness of hepatocytes obtained from partially hepatectomized rats.
    Huerta-Bahena J; García-Sáinz JA
    Biochem J; 1984 Nov; 223(3):925-8. PubMed ID: 6508748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones.
    Creba JA; Downes CP; Hawkins PT; Brewster G; Michell RH; Kirk CJ
    Biochem J; 1983 Jun; 212(3):733-47. PubMed ID: 6309153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of the norepinephrine-stimulated phosphatidylinositol turnover in rat pineal cell dispersions.
    Hauser G; Smith TL
    Neurochem Res; 1981 Oct; 6(10):1067-79. PubMed ID: 6278348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+-dependent and Ca2+-independent degradation of phosphatidylinositol in rabbit vas deferens.
    Egawa K; Sacktor B; Takenawa T
    Biochem J; 1981 Jan; 194(1):129-36. PubMed ID: 6272722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of trifluoperazine on function and structure of toad urinary bladder. Role of calmodulin vasopressin-stimulation of water permeability.
    Levine SD; Kachadorian WA; Levin DN; Schlondorff D
    J Clin Invest; 1981 Mar; 67(3):662-72. PubMed ID: 6259206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormonal stimulation of cyclic AMP accumulation and glycogen phosphorylase activity in calcium-depleted hepatocytes from euthyroid and hypothyroid rats.
    Malbon CC; Gilman HR; Fain JN
    Biochem J; 1980 Jun; 188(3):593-9. PubMed ID: 6258557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of calcium ions in the mechanism of action of alpha-adrenergic agonists in rat liver.
    Reinhart PH; Taylor WM; Bygrave FL
    Biochem J; 1984 Oct; 223(1):1-13. PubMed ID: 6149742
    [No Abstract]   [Full Text] [Related]  

  • 12. Calcium ion fluxes induced by the action of alpha-adrenergic agonists in perfused rat liver.
    Reinhart PH; Taylor WM; Bygrave FL
    Biochem J; 1982 Dec; 208(3):619-30. PubMed ID: 6131669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous desensitization of the cyclic AMP-independent glycogenolytic response in rat liver cells.
    Bréant B; Keppens S; De Wulf H
    Biochem J; 1981 Dec; 200(3):509-14. PubMed ID: 6123310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agonist versus antagonist binding to alpha-adrenergic receptors.
    Hoffman BB; Michel T; Kilpatrick DM; Lefkowitz RJ; Tolbert ME; Gilman H; Fain JN
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4569-73. PubMed ID: 6107908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat fat-cells have three types of adenosine receptors (Ra, Ri and P). Differential effects of pertussis toxin.
    García-Sáinz JA; Torner ML
    Biochem J; 1985 Dec; 232(2):439-43. PubMed ID: 3004405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in alpha 1-adrenergic action.
    García-Sáinz JA; Hernández-Sotomayor SM
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6727-30. PubMed ID: 2995981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma membrane phospholipid content in non-insulin-dependent streptozotocin-diabetic rats--effect of insulin.
    Levy J; Suzuki Y; Avioli LV; Grunberger G; Gavin JR
    Diabetologia; 1988 May; 31(5):315-21. PubMed ID: 2969343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanine nucleotide regulation of [3H]vasopressin binding to liver plasma membranes and solubilized receptors. Evidence for the involvement of a guanine nucleotide regulatory protein.
    Bojanic D; Fain JN
    Biochem J; 1986 Dec; 240(2):361-5. PubMed ID: 2949738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in extracellular calcium within the physiological range influence receptor-mediated inositol phosphate responses in brain and tracheal smooth muscle slices.
    Baird JG; Chilvers ER; Kennedy ED; Nahorski SR
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Mar; 339(3):247-51. PubMed ID: 2725701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oestrogen on adenylate cyclase system and glucose output in rat liver.
    Shima S; Okeyama N; Akamatu N
    Biochem J; 1989 Jan; 257(2):407-11. PubMed ID: 2539086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.