These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 6767705)

  • 1. Glucose fermentation pathway of Thermoanaerobium brockii.
    Lamed R; Zeikus JG
    J Bacteriol; 1980 Mar; 141(3):1251-7. PubMed ID: 6767705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii.
    Lamed R; Zeikus JG
    J Bacteriol; 1980 Nov; 144(2):569-78. PubMed ID: 7430065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway.
    Thompson TE; Zeikus JG
    J Bacteriol; 1988 Sep; 170(9):3996-4000. PubMed ID: 3410821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrate metabolism in Spirochaeta stenostrepta.
    Hespell RB; Canale-Parola E
    J Bacteriol; 1970 Jul; 103(1):216-26. PubMed ID: 5423371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii.
    Ben-Bassat A; Lamed R; Zeikus JG
    J Bacteriol; 1981 Apr; 146(1):192-9. PubMed ID: 7217000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose and pyruvate metabolism of Spirochaeta litoralis, an anaerobic marine spirochete.
    Hespell RB; Canale-Parola E
    J Bacteriol; 1973 Nov; 116(2):931-7. PubMed ID: 4745435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO 2 .
    Andreesen JR; Schaupp A; Neurauter C; Brown A; Ljungdahl LG
    J Bacteriol; 1973 May; 114(2):743-51. PubMed ID: 4706193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum.
    Zeikus JG; Fuchs G; Kenealy W; Thauer RK
    J Bacteriol; 1977 Nov; 132(2):604-13. PubMed ID: 914779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway of succinate and propionate formation in Bacteroides fragilis.
    Macy JM; Ljungdahl LG; Gottschalk G
    J Bacteriol; 1978 Apr; 134(1):84-91. PubMed ID: 148460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End Products of Glucose Fermentation by Brochothrix thermosphacta.
    Grau FH
    Appl Environ Microbiol; 1983 Jan; 45(1):84-90. PubMed ID: 16346185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose catabolism by Spirochaeta thermophila RI 19.B1.
    Janssen PH; Morgan HW
    J Bacteriol; 1992 Apr; 174(8):2449-53. PubMed ID: 1556064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose degradation, molar growth yields, and evidence for oxidative phosphorylation in Streptococcus agalactiae.
    Mickelson MN
    J Bacteriol; 1972 Jan; 109(1):96-105. PubMed ID: 4550679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential amylosaccharide metabolism of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum.
    Hyun HH; Shen GJ; Zeikus JG
    J Bacteriol; 1985 Dec; 164(3):1153-61. PubMed ID: 3934139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of glucose metabolism in Thiobacillus intermedius.
    Matin A; Rittenberg SC
    J Bacteriol; 1970 Oct; 104(1):239-46. PubMed ID: 5473892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans.
    Tabita R; Lundgren DG
    J Bacteriol; 1971 Oct; 108(1):334-42. PubMed ID: 4399339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autotrophy in Nitrosocystis oceanus.
    Williams PJ; Watson SW
    J Bacteriol; 1968 Nov; 96(5):1640-8. PubMed ID: 5726306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose metabolism in Neisseria gonorrhoeae.
    Morse SA; Stein S; Hines J
    J Bacteriol; 1974 Nov; 120(2):702-14. PubMed ID: 4156358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of glucose by Clostridium thermocellum: presence of glucokinase and other glycolytic enzymes in cell extracts.
    Patni NJ; Alexander JK
    J Bacteriol; 1971 Jan; 105(1):220-5. PubMed ID: 5541008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming).
    Labes A; Schönheit P
    Arch Microbiol; 2001 Nov; 176(5):329-38. PubMed ID: 11702074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum.
    SIMMONS RJ; COSTILOW RN
    J Bacteriol; 1962 Dec; 84(6):1274-81. PubMed ID: 13977433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.