These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6768087)

  • 1. Effect of microwave irradiation on brain tissue structure and catecholamine distribution.
    Maruyama Y; Nakamura R; Kobayashi K
    Psychopharmacology (Berl); 1980 Feb; 67(2):119-23. PubMed ID: 6768087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postmortem changes in catecholamines, indoleamines, and their metabolites in rat brain regions: prevention with 10-kW microwave irradiation.
    Ikarashi Y; Sasahara T; Maruyama Y
    J Neurochem; 1985 Sep; 45(3):935-9. PubMed ID: 2411860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine diffusion after microwave fixation at 986 MHz.
    Kant GJ; Lenox RH; Meyerhoff JL
    Neurochem Res; 1979 Aug; 4(4):529-34. PubMed ID: 481683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue structure of rat brain after microwave irradiation using maximum magnetic field component.
    Ikarashi Y; Okada M; Maruyama Y
    Brain Res; 1986 May; 373(1-2):182-8. PubMed ID: 3719306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of microwave irradiation to prevent postmortem catecholamine metabolism: evidence for tissue disruption artifact in a discrete region of rat brain.
    Sharpless NS; Brown LL
    Brain Res; 1978 Jan; 140(1):171-6. PubMed ID: 626880
    [No Abstract]   [Full Text] [Related]  

  • 6. Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H] mazindol autoradiography.
    Donnan GA; Kaczmarczyk SJ; Paxinos G; Chilco PJ; Kalnins RM; Woodhouse DG; Mendelsohn FA
    J Comp Neurol; 1991 Feb; 304(3):419-34. PubMed ID: 2022757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional levels of histamine in rat brain after microwave irradiation: evidence for artifacts in the enzymatic--isotopic assay.
    Subramanian N; Schinzel W; Mitznegg P; Estler CJ
    Agents Actions; 1978 Oct; 8(5):488-90. PubMed ID: 717182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Levels of norepinephrine and dopamine in mouse brain regions following microwave inactivation--rapid post-mortem degradation of striatal dopamine in decapitated animals.
    Blank CL; Sasa S; Isernhagen R; Meyerson LR; Wassil D; Wong P; Modak AT; Stavinoha WB
    J Neurochem; 1979 Jul; 33(1):213-9. PubMed ID: 37287
    [No Abstract]   [Full Text] [Related]  

  • 9. [Topography of catecholamine-containing neurons of the locus coeruleus in the cat].
    Semeniutin AI
    Fiziol Zh (1978); 1989; 35(2):7-13. PubMed ID: 2721748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropeptide Y (NPY) mRNA in rat brain tissue: effects of decapitation and high-energy microwave irradiation on post mortem stability.
    Thorsell A; Gruber SH; Mathé AA; Heilig M
    Neuropeptides; 2001; 35(3-4):168-73. PubMed ID: 11884207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain regional levels of adenosine and adenosine nucleotides in rats killed by high-energy focused microwave irradiation.
    Delaney SM; Geiger JD
    J Neurosci Methods; 1996 Feb; 64(2):151-6. PubMed ID: 8699875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assay of norepinephrine and dopamine in the rat brain after microwave irradiation.
    Maruyama Y; Kusaka M
    Life Sci; 1978 Oct; 23(15):1603-8. PubMed ID: 723438
    [No Abstract]   [Full Text] [Related]  

  • 13. Study of the use of the microwave magnetic field for the rapid inactivation of brain enzymes.
    Ikarashi Y; Maruyama Y; Stavinoha WB
    Jpn J Pharmacol; 1984 Aug; 35(4):371-87. PubMed ID: 6503038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous dopa in rat brain. Occurrence, distribution and relationship to changes i catecholamine synthesis.
    Thiede HM; Kehr W
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Jul; 316(4):299-303. PubMed ID: 6791035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast fixation of brain in situ by high intensity microwave irradiation: application to neurochemical studies.
    Butcher SH; Butcher LL; Harms MS; Jendent DJ
    J Microw Power; 1976 Mar; 11(1):61-5. PubMed ID: 1046075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of catecholamine depleting drugs and d-amphetamine on self-stimulation of the substantia nigra and locus coeruleus.
    Cooper BR; Konkol RJ; Breese GR
    J Pharmacol Exp Ther; 1978 Mar; 204(3):592-605. PubMed ID: 24729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonin- and catecholamine-related substances in the brain of ornithine transcarbamylase-deficient Sparse-fur mice in the hyperammonemic state: comparison of two procedures for obtaining brain extract, decapitation and microwave irradiation.
    Inoue I; Shimizu T; Saheki T; Noda T; Fukuda T
    Biochem Med Metab Biol; 1989 Dec; 42(3):232-9. PubMed ID: 2597437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused microwave irradiation of the brain preserves in vivo protein phosphorylation: comparison with other methods of sacrifice and analysis of multiple phosphoproteins.
    O'Callaghan JP; Sriram K
    J Neurosci Methods; 2004 May; 135(1-2):159-68. PubMed ID: 15020100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium-induced release of [3H]catecholamine from brain: effects of pre-exposure to catecholamine uptake inhibitors.
    Dembiec D; Cohen G
    J Pharmacol Exp Ther; 1981 Jun; 217(3):727-32. PubMed ID: 7230001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microwave irradiation on monoamine metabolism in dissected rat brain.
    Ishikawa K; Shibanoki S; Saito S; McGaugh JL
    Brain Res; 1982 May; 240(1):158-61. PubMed ID: 7093715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.