BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6768385)

  • 1. Short-lived delayed luminescence of photosynthesizing organisms. II. The ratio between delayed and prompt fluorescence as studied by the modulation method.
    Godik VI; Borisov AY
    Biochim Biophys Acta; 1980 Apr; 590(2):182-93. PubMed ID: 6768385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-lived delayed luminescence of photosynthetic organisms. I. Nanosecond afterglows in purple bacteria at low redox potentials.
    Godik VI; Borisov AY
    Biochim Biophys Acta; 1979 Nov; 548(2):296-308. PubMed ID: 116682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosecond fluorescence from chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum.
    Woodbury NW; Parson WW
    Biochim Biophys Acta; 1986 Jul; 850(2):197-210. PubMed ID: 3087422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Use of urea by purple bacteria].
    Malofeeva IV
    Mikrobiologiia; 1979; 48(3):411-7. PubMed ID: 112359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flash-induced changes in the in vivo bacteriochlorophyll fluorescence yield at low temperatures and low redox potentials in carotenoid-containing strains of photosynthetic bacteria.
    Holmes NG; van Grondelle R; Duysens LN
    Biochim Biophys Acta; 1978 Jul; 503(1):26-36. PubMed ID: 96856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Possible pathways for acetyl-CoA formation by purple bacteria].
    Krasil'nikova EN; Kondrat'eva EN
    Mikrobiologiia; 1979; 48(5):779-84. PubMed ID: 228168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriochlorophyll fluorescence of purple bacteria at low redox potentials. The relationship between reaction center triplet yield and the emission yield.
    van Grondelle R; Holmes NG; Rademaker H; Duysens LN
    Biochim Biophys Acta; 1978 Jul; 503(1):10-25. PubMed ID: 96854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum.
    Cogdell RJ; Monger TG; Parson WW
    Biochim Biophys Acta; 1975 Dec; 408(3):189-99. PubMed ID: 811259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Nitrate utilization by purple bacteria].
    Malofeeva IV; Bogorov LV; Gogotov IN
    Mikrobiologiia; 1974; 43(6):967-72. PubMed ID: 4155788
    [No Abstract]   [Full Text] [Related]  

  • 10. Energy transfer and bacteriochlorophyll fluorescence in purple bacteria at low temperature.
    Rijgersberg CP; van Grondelle R; Amesz J
    Biochim Biophys Acta; 1980 Aug; 592(1):53-64. PubMed ID: 6772218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions.
    Russell NJ; Harwood JL
    Biochem J; 1979 Aug; 181(2):339-45. PubMed ID: 115463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria.
    Aagaard J; Sistrom WR
    Photochem Photobiol; 1972 Feb; 15(2):209-25. PubMed ID: 4621847
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics.
    Leigh JS; Dutton PL
    Biochim Biophys Acta; 1974 Jul; 357(1):67-77. PubMed ID: 4370313
    [No Abstract]   [Full Text] [Related]  

  • 14. Low temperature excitation and emission spectroscopy of the photosynthetic bacteria Rhodopseudomonas sphaeroides 'wild-type' strain ATCC 17023.
    Kaiser GH; Beck J; von Schütz JU; Wolf HC
    Biochim Biophys Acta; 1981 Jan; 634(1):153-64. PubMed ID: 6970593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstituted energy transfer from antenna pigment-protein to reaction centres isolated from Rhodopseudomonas sphaeroides.
    Heathcote P; Clayton RK
    Biochim Biophys Acta; 1977 Mar; 459(3):506-15. PubMed ID: 300249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the structure of the reaction center in photosynthetic bacteria by optical detection of triplet state magnetic resonance.
    Clarke RH; Connors RE; Frank HA
    Biochem Biophys Res Commun; 1976 Jul; 71(2):671-5. PubMed ID: 183778
    [No Abstract]   [Full Text] [Related]  

  • 17. [Kinetic model of the operation of a 2-electron switch in the photosynthetic reaction center of bacteria].
    Shinkarev VP; Verkhovskiĭ MI; Kaurov BS; Rubin AB
    Mol Biol (Mosk); 1981; 15(5):1069-82. PubMed ID: 6795442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear annihilation of excitations in photosynthetic systems.
    Valkunas L; Trinkunas G; Liuolia V; van Grondelle R
    Biophys J; 1995 Sep; 69(3):1117-29. PubMed ID: 8519966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria.
    Berne C; Allainmat B; Garcia D
    Biotechnol Lett; 2005 Apr; 27(8):561-6. PubMed ID: 15973490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of dehydration on the primary picosecond stages of charge separation in Rhodospirillum rubrum].
    Godik VI; Noks PP; Kononenko AA; Borisov AIu; Rubin AB
    Mol Biol (Mosk); 1984; 18(6):1562-8. PubMed ID: 6441114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.