These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 6768721)
1. Methylenetetrahydrofolate-dependent biosynthesis of ribothymidine in transfer RNA of Streptococcus faecalis. Evidence for reduction of the 1-carbon unit by FADH2. Delk AS; Nagle DP; Rabinowitz JC J Biol Chem; 1980 May; 255(10):4387-90. PubMed ID: 6768721 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of ribothymidine in the transfer RNA of Streptococcus faecalis and Bacillus subtilis. A methylation of RNA involving 5,10-methylenetetrahydrofolate. Delk AS; Romeo JM; Nagle DP; Rabinowitz JC J Biol Chem; 1976 Dec; 251(23):7649-56. PubMed ID: 826533 [TBL] [Abstract][Full Text] [Related]
3. The methylenetetrahydrofolate-mediated biosynthesis of ribothymidine in the transfer-RNA of Streptococcus faecalis: incorporation of hydrogen from solvent into the methyl moiety. Delk AS; Nagle DP; Rabinowitz JC; Straub KM Biochem Biophys Res Commun; 1979 Jan; 86(2):244-51. PubMed ID: 106850 [No Abstract] [Full Text] [Related]
4. Tetrahydrofolate-dependent biosynthesis of ribothymidine in transfer ribonucleic acids of Gram-positive bacteria. Schmidt W; Arnold HH; Kersten H J Bacteriol; 1977 Jan; 129(1):15-21. PubMed ID: 318638 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine. Delk AS; Rabinowitz JC Proc Natl Acad Sci U S A; 1975 Feb; 72(2):528-30. PubMed ID: 804695 [TBL] [Abstract][Full Text] [Related]
6. Biosynthetic pathway of ribothymidine in B. subtilis and M. lysodeikticus involving different coenzymes for transfer RNA and ribosomal RNA. Schmidt W; Arnold HH; Kersten H Nucleic Acids Res; 1975 Jul; 2(7):1043-51. PubMed ID: 807911 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of the tetrahydrofolate-dependent biosynthesis of ribothymidine in tRNAs of B. subtilis and M. lysodeikticus by trimethoprim. Arnold HH; Kersten H FEBS Lett; 1975 May; 53(2):258-61. PubMed ID: 806472 [No Abstract] [Full Text] [Related]
8. A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis. Hamdane D; Guerineau V; Un S; Golinelli-Pimpaneau B Biochemistry; 2011 Jun; 50(23):5208-19. PubMed ID: 21561081 [TBL] [Abstract][Full Text] [Related]
10. Flavin-Dependent Methylation of RNAs: Complex Chemistry for a Simple Modification. Hamdane D; Grosjean H; Fontecave M J Mol Biol; 2016 Dec; 428(24 Pt B):4867-4881. PubMed ID: 27825927 [TBL] [Abstract][Full Text] [Related]
11. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs. Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931 [TBL] [Abstract][Full Text] [Related]
12. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications. Urbonavicius J; Skouloubris S; Myllykallio H; Grosjean H Nucleic Acids Res; 2005; 33(13):3955-64. PubMed ID: 16027442 [TBL] [Abstract][Full Text] [Related]
13. Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis. Hamdane D; Argentini M; Cornu D; Myllykallio H; Skouloubris S; Hui-Bon-Hoa G; Golinelli-Pimpaneau B J Biol Chem; 2011 Oct; 286(42):36268-80. PubMed ID: 21846722 [TBL] [Abstract][Full Text] [Related]
14. Activation of a unique flavin-dependent tRNA-methylating agent. Hamdane D; Bruch E; Un S; Field M; Fontecave M Biochemistry; 2013 Dec; 52(49):8949-56. PubMed ID: 24228791 [TBL] [Abstract][Full Text] [Related]
15. Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives. Jorns MS; Wang BY; Jordan SP; Chanderkar LP Biochemistry; 1990 Jan; 29(2):552-61. PubMed ID: 2405908 [TBL] [Abstract][Full Text] [Related]
16. Folate-/FAD-dependent tRNA methyltransferase from Thermus thermophilus regulates other modifications in tRNA at low temperatures. Yamagami R; Tomikawa C; Shigi N; Kazayama A; Asai S; Takuma H; Hirata A; Fourmy D; Asahara H; Watanabe K; Yoshizawa S; Hori H Genes Cells; 2016 Jul; 21(7):740-54. PubMed ID: 27238446 [TBL] [Abstract][Full Text] [Related]
17. In vitro detection of the enzymatic activity of folate-dependent tRNA (Uracil-54,-C5)-methyltransferase: evolutionary implications. Urbonavicius J; Brochier-Armanet C; Skouloubris S; Myllykallio H; Grosjean H Methods Enzymol; 2007; 425():103-19. PubMed ID: 17673080 [TBL] [Abstract][Full Text] [Related]
18. Identification of a novel tRNA wobble uridine modifying activity in the biosynthesis of 5-methoxyuridine. Ryu H; Grove TL; Almo SC; Kim J Nucleic Acids Res; 2018 Sep; 46(17):9160-9169. PubMed ID: 29982645 [TBL] [Abstract][Full Text] [Related]
19. Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase. Nishimasu H; Ishitani R; Yamashita K; Iwashita C; Hirata A; Hori H; Nureki O Proc Natl Acad Sci U S A; 2009 May; 106(20):8180-5. PubMed ID: 19416846 [TBL] [Abstract][Full Text] [Related]
20. FAD/folate-dependent tRNA methyltransferase: flavin as a new methyl-transfer agent. Hamdane D; Argentini M; Cornu D; Golinelli-Pimpaneau B; Fontecave M J Am Chem Soc; 2012 Dec; 134(48):19739-45. PubMed ID: 23157377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]