BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6768834)

  • 1. Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa.
    Rahman M; Clarke PH
    J Gen Microbiol; 1980 Feb; 116(2):357-69. PubMed ID: 6768834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolism of L-lysine by Pseudomonas aeruginosa.
    Fothergill JC; Guest JR
    J Gen Microbiol; 1977 Mar; 99(1):139-55. PubMed ID: 405455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catabolism of arginine by Pseudomonas aeruginosa.
    Rahman M; Laverack PD; Clarke PH
    J Gen Microbiol; 1980 Feb; 116(2):371-80. PubMed ID: 6768835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1.
    Madhuri Indurthi S; Chou HT; Lu CD
    Microbiology (Reading); 2016 May; 162(5):876-888. PubMed ID: 26967762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lysine biosynthesis of Pseudomonas aeruginosa PAO1. III. Further characterization of lysine auxotrophic mutant of Ps. aeruginosa PAO1].
    Schroeter A; Klatt G; Kersten R; Mach F
    Z Allg Mikrobiol; 1981; 21(4):343-6. PubMed ID: 6794230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-lysine catabolism is controlled by L-arginine and ArgR in Pseudomonas aeruginosa PAO1.
    Chou HT; Hegazy M; Lu CD
    J Bacteriol; 2010 Nov; 192(22):5874-80. PubMed ID: 20833801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa.
    Yang Z; Lu CD
    J Bacteriol; 2007 Jun; 189(11):3945-53. PubMed ID: 17416670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase.
    Tabor H; Hafner EW; Tabor CW
    J Bacteriol; 1980 Dec; 144(3):952-6. PubMed ID: 7002915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of an L-histidinol-utilizing mutant of Pseudomonas aeruginosa.
    Dhawale MR; Creaser EH
    J Gen Microbiol; 1975 Dec; 91(2):241-8. PubMed ID: 1461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial catabolism of aromatic biogenic amines by Pseudomonas aeruginosa PAO: pathway description, mapping of mutations, and cloning of essential genes.
    Cuskey SM; Peccoraro V; Olsen RH
    J Bacteriol; 1987 Jun; 169(6):2398-404. PubMed ID: 3034855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Lysine biosynthesis in Pseudomonas aeruginosa PAO 1. II. First studies of DAP decarboxylase of lysine auxotrophic mutant of P. aeruginosa PAO 1].
    Schröder D; Wölfel L; Schroeter A; Mach F
    Z Allg Mikrobiol; 1978; 18(6):453-6. PubMed ID: 102088
    [No Abstract]   [Full Text] [Related]  

  • 12. Genetics of the mandelate pathway in Pseudomonas aeruginosa.
    Rosenberg SL; Hegeman GD
    J Bacteriol; 1971 Dec; 108(3):1270-6. PubMed ID: 5003177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadaverine suppresses persistence to carboxypenicillins in Pseudomonas aeruginosa PAO1.
    Manuel J; Zhanel GG; de Kievit T
    Antimicrob Agents Chemother; 2010 Dec; 54(12):5173-9. PubMed ID: 20855735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of L-threonine deaminase and L-threonine 3-dehydrogenase in the utilization of L-threonine by Pseudomonas aeruginosa.
    Lam VM; Chan IP; Yeung YG
    J Gen Microbiol; 1980 Apr; 117(2):539-42. PubMed ID: 6775044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Lysine decarboxylase in Pseudomonas aeruginosa].
    Denis F; Al Delaimi K; Chiron JP
    C R Seances Soc Biol Fil; 1977; 171(2):484-7. PubMed ID: 19133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdin.
    Visca P; Serino L; Orsi N
    J Bacteriol; 1992 Sep; 174(17):5727-31. PubMed ID: 1512205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering of mutations affecting central pathway enzymes of carbohydrate catabolism in Pseudomonas aeruginosa.
    Roehl RA; Feary TW; Phibbs PV
    J Bacteriol; 1983 Dec; 156(3):1123-9. PubMed ID: 6417110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1.
    Chou HT; Li JY; Peng YC; Lu CD
    J Bacteriol; 2013 Sep; 195(17):3906-13. PubMed ID: 23794626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of pyrimidine biosynthesis in Pseudomonas aeruginosa.
    Isaac JH; Holloway BW
    J Bacteriol; 1968 Nov; 96(5):1732-41. PubMed ID: 4973129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneously Enhancing the Stability and Catalytic Activity of Multimeric Lysine Decarboxylase CadA by Engineering Interface Regions for Enzymatic Production of Cadaverine at High Concentration of Lysine.
    Hong EY; Lee SG; Park BJ; Lee JM; Yun H; Kim BG
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28843030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.