BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 6768836)

  • 21. Putrescine Biosynthesis from Agmatine by Arginase (TtARG) in Thermus thermophilus.
    Kobayashi T; Sakamoto A; Kashiwagi K; Igarashi K; Takao K; Uemura T; Moriya T; Oshima T; Terui Y
    J Biochem; 2023 Jun; 174(1):81-88. PubMed ID: 37001547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of Arginine and Ornithine Decarboxylase Activities in Plants.
    Alcázar R; Tiburcio AF
    Methods Mol Biol; 2018; 1694():117-122. PubMed ID: 29080161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activities and properties of putrescine-biosynthetic enzymes in Vibrio parahaemolyticus.
    Yamamoto S; Nakao H; Yamasaki K; Takashina K; Suemoto Y; Shinoda S
    Microbiol Immunol; 1988; 32(7):675-87. PubMed ID: 3193911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biogenic amine production by Lactobacillus.
    Arena ME; Manca de Nadra MC
    J Appl Microbiol; 2001 Feb; 90(2):158-62. PubMed ID: 11168717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymes of arginine utilization and their formation in Aeromonas formicans NCIB 9232.
    Stalon V; Simon JP; Mercenier A
    Arch Microbiol; 1982 Dec; 133(4):295-9. PubMed ID: 6303241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa.
    Jann A; Stalon V; Wauven CV; Leisinger T; Haas D
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4937-41. PubMed ID: 16593724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The catabolism of arginine by Pseudomonas aeruginosa.
    Rahman M; Laverack PD; Clarke PH
    J Gen Microbiol; 1980 Feb; 116(2):371-80. PubMed ID: 6768835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors affecting the production of putrescine from agmatine by Lactobacillus hilgardii XB isolated from wine.
    Arena ME; Landete JM; Manca de Nadra MC; Pardo I; Ferrer S
    J Appl Microbiol; 2008 Jul; 105(1):158-65. PubMed ID: 18248375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria.
    Stalon V; Vander Wauven C; Momin P; Legrain C
    J Gen Microbiol; 1987 Sep; 133(9):2487-95. PubMed ID: 3129535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis.
    Simon JP; Stalon V
    J Bacteriol; 1982 Nov; 152(2):676-81. PubMed ID: 6290446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual role for N-2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism.
    Voellmy R; Leisinger T
    J Bacteriol; 1975 Jun; 122(3):799-809. PubMed ID: 238949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa.
    Mercenier A; Simon JP; Vander Wauven C; Haas D; Stalon V
    J Bacteriol; 1980 Oct; 144(1):159-63. PubMed ID: 6252188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fermentation of agmatine in Streptococcus faecalis: occurrence of putrescine transcarbamoylase.
    Roon RJ; Barker HA
    J Bacteriol; 1972 Jan; 109(1):44-50. PubMed ID: 4621632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic studies of the agmatine deiminase from Listeria monocytogenes.
    Soares CA; Knuckley B
    Biochem J; 2016 Jun; 473(11):1553-61. PubMed ID: 27034081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a Pseudomonas aeruginosa Agmatine Biosensor.
    Gilbertsen A; Williams B
    Biosensors (Basel); 2014 Dec; 4(4):387-402. PubMed ID: 25587430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain?
    Peters D; Berger J; Langnaese K; Derst C; Madai VI; Krauss M; Fischer KD; Veh RW; Laube G
    PLoS One; 2013; 8(6):e66735. PubMed ID: 23840524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lack of arginine decarboxylase in Trypanosoma cruzi epimastigotes.
    Carrillo C; Cejas S; Huber A; González NS; Algranati ID
    J Eukaryot Microbiol; 2003; 50(5):312-6. PubMed ID: 14563168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa.
    Yang Z; Lu CD
    J Bacteriol; 2007 Jun; 189(11):3945-53. PubMed ID: 17416670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. L-lysine catabolism is controlled by L-arginine and ArgR in Pseudomonas aeruginosa PAO1.
    Chou HT; Hegazy M; Lu CD
    J Bacteriol; 2010 Nov; 192(22):5874-80. PubMed ID: 20833801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative studies on the degradation of guanidino and ureido compounds by Pseudomonas.
    Tricot C; Piérard A; Stalon V
    J Gen Microbiol; 1990 Nov; 136(11):2307-17. PubMed ID: 2079625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.