These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6769433)

  • 1. Detection of cytochrome b+50 in membranes of Rhodospirillum rubrum isolated from aerobically and phototrophically grown cells.
    Niederman RA; Hunter CN; Mallon DE; Jones OT
    Biochem J; 1980 Feb; 186(2):453-9. PubMed ID: 6769433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membranes of Rhodospirillum rubrum: isolation and physicochemical properties of membranes from aerobically grown cells.
    Collins ML; Niederman RA
    J Bacteriol; 1976 Jun; 126(3):1316-25. PubMed ID: 820689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blue and red shifts of bacteriochlorophyll absorption band around 880 nm in Rhodospirillum rubrum.
    Barsky EL; Samuilov VD
    Biochim Biophys Acta; 1979 Dec; 548(3):448-57. PubMed ID: 41575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Shifts of the bacteriochlorophyll absorption band at 880 nm in chromatophores and subchromatophore pigment-protein complexes from Rhodospirillum rubrum].
    Barskiĭ EL; Samuilov VD
    Biokhimiia; 1979 Oct; 44(10):1805-13. PubMed ID: 41599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electron transport system of the halophilic purple nonsulfur bacterium Rhodospirillum salinarum. 1. A functional and thermodynamic analysis of the respiratory chain in aerobically and photosynthetically grown cells.
    Moschettini G; Hochkoeppler A; Monti B; Benelli B; Zannoni D
    Arch Microbiol; 1997 Oct; 168(4):302-9. PubMed ID: 9297468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of a cytochrome c-enriched light particulate fraction isolated from the photosynthetic bacterium Rhodopseudomonas spheroides.
    Barrett J; Hunter CN; Jones OT
    Biochem J; 1978 Jul; 174(1):267-75. PubMed ID: 212023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membranes of Rhodospirillum rubrum: physicochemical properties of chromatophore fractions isolated from osmotically and mechanically disrupted cells.
    Collins ML; Niederman RA
    J Bacteriol; 1976 Jun; 126(3):1326-38. PubMed ID: 820690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of two 3,3'-diaminobenzidine oxidation reactions associated with photosynthetic membranes in anaerobic light-grown Rhodospirillum rubrum.
    Stevens FJ; Pankratz HS; Uffen RL
    J Histochem Cytochem; 1977 Nov; 25(11):1264-8. PubMed ID: 410873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of a membrane-bound, low-potential c-type cytochrome from purple photosynthetic bacteria, with special reference to Rhodospirillum rubrum.
    Yoch DC; Carithers RP; Arnon DI
    J Bacteriol; 1978 Dec; 136(3):1018-26. PubMed ID: 214418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P430, a possible primary electron acceptor in Rhodospirillum rubrum.
    Silberstein BR; Gromet-Elhanan Z
    FEBS Lett; 1974 Jun; 42(2):141-4. PubMed ID: 4369098
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization and phenotypic control of the cytochrome content of Escherichia coli.
    Reid GA; Ingledew WJ
    Biochem J; 1979 Aug; 182(2):465-72. PubMed ID: 389237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Acid-soluble nucleotides of the phototrophic bacterium Rhodospirillum rubrum during growth in light and in darkness].
    Shadi A; Mansurova SE; Cherniad'ev II; Kulaev IS
    Mikrobiologiia; 1975; 44(2):206-9. PubMed ID: 818480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viability and endogenous substrates used during starvation survival of Rhodospirillum rubrum.
    Breznak JA; Potrikus CJ; Pfennig N; Ensign JC
    J Bacteriol; 1978 May; 134(2):381-8. PubMed ID: 96087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the architecture of cytoplasmic and intracytoplasmic membranes of three chemotrophically and phototrophically grown species of the Rhodospirillaceae.
    Golecki JR; Oelze J
    J Bacteriol; 1980 Nov; 144(2):781-8. PubMed ID: 6776096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of respiratory reactions in Rhodospirillum rubrum: inhibition studies with 2-hydroxydiphenyl.
    Oelze J; Kamen MD
    Biochim Biophys Acta; 1975 Apr; 387(1):1-11. PubMed ID: 164937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferredoxins in light- and dark-grown photosynthetic cells with special reference to Rhodospirillum rubrum.
    Shanmugam KT; Buchanan BB; Arnon DI
    Biochim Biophys Acta; 1972 Feb; 256(2):477-86. PubMed ID: 4401426
    [No Abstract]   [Full Text] [Related]  

  • 17. [Role of ferredoxin in the metabolism of hydrogen by Rhodospirillum rubrum].
    Gogotov IN; Laurinavichene TV
    Mikrobiologiia; 1975; 44(4):581-6. PubMed ID: 241001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman spectroscopy of cytochrome bc1 complexes from Rhodospirillum rubrum: initial characterization and reductive titrations.
    Hobbs DD; Kriauciunas A; Güner S; Knaff DB; Ondrias MR
    Biochim Biophys Acta; 1990 Jul; 1018(1):47-54. PubMed ID: 2165419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the mechanism of spectral changes in carotenoids in the chromatophores of Rhodospirillum rubrum.
    Glinskii VP; Samuilov VD; Skulachev VP
    Mol Biol; 1972; 6(5):533-7. PubMed ID: 4350135
    [No Abstract]   [Full Text] [Related]  

  • 20. Phototactic response of aerobically cultivated Rhodospirillum rubrum.
    Harayama S; Iino T
    J Gen Microbiol; 1976 May; 94(1):173-9. PubMed ID: 819621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.