BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6769900)

  • 1. Mutants defective in isomerase and decarboxylase activities of the 4-hydroxyphenylacetic acid meta-cleavage pathway in Pseudomonas putida.
    Barbour MG; Bayly RC
    J Bacteriol; 1980 May; 142(2):480-5. PubMed ID: 6769900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and purification of distinct isomerase and decarboxylase enzymes involved in the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli.
    Garrido-Peritierra A; Cooper RA
    Eur J Biochem; 1981 Jul; 117(3):581-4. PubMed ID: 7026235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas putida mutants defective in the metabolism of the products of meta fission of catechol and its methyl analogues.
    Wigmore GJ; Bayly RC; Di Berardino D
    J Bacteriol; 1974 Oct; 120(1):31-7. PubMed ID: 4418942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of meta-cleavage degradation of 4-hydroxyphenylacetate in Pseudomonas putida.
    Barbour MG; Bayly RC
    J Bacteriol; 1981 Sep; 147(3):844-50. PubMed ID: 6895079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida.
    Harayama S; Rekik M; Ngai KL; Ornston LN
    J Bacteriol; 1989 Nov; 171(11):6251-8. PubMed ID: 2681159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p-Cymene pathway in Pseudomonas putida: ring cleavage of 2,3-dihydroxy-p-cumate and subsequent reactions.
    DeFrank JJ; Ribbons DW
    J Bacteriol; 1977 Mar; 129(3):1365-74. PubMed ID: 845118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the meta-cleavage of 4-hydroxyphenylacetic acid by Pseudomonas putida.
    Barbour MG; Bayly RC
    Biochem Biophys Res Commun; 1976 May; 76(2):565-71. PubMed ID: 1027447
    [No Abstract]   [Full Text] [Related]  

  • 8. Catabolism of 3- and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli.
    Cooper RA; Skinner MA
    J Bacteriol; 1980 Jul; 143(1):302-6. PubMed ID: 6995433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid.
    Sparnins VL; Chapman PJ; Dagley S
    J Bacteriol; 1974 Oct; 120(1):159-67. PubMed ID: 4420192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification, nucleotide sequence and some properties of a bifunctional isomerase/decarboxylase from the homoprotocatechuate degradative pathway of Escherichia coli C.
    Roper DI; Cooper RA
    Eur J Biochem; 1993 Oct; 217(2):575-80. PubMed ID: 8223600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid.
    Williams PA; Murray K
    J Bacteriol; 1974 Oct; 120(1):416-23. PubMed ID: 4418209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of phenol and cresols by mutants of Pseudomonas putida.
    Bayly RC; Wigmore GJ
    J Bacteriol; 1973 Mar; 113(3):1112-20. PubMed ID: 4347965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative routes of aromatic catabolism in Pseudomonas acidovorans and Pseudomonas putida: gallic acid as a substrate and inhibitor of dioxygenases.
    Sparnins VL; Dagley S
    J Bacteriol; 1975 Dec; 124(3):1374-81. PubMed ID: 1194238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible uptake system for -carboxy-cis, cis-muconate in a permeability mutant of Pseudomonas putida.
    Meagher RB; McCorkle GM; Ornston MK; Ornston LN
    J Bacteriol; 1972 Aug; 111(2):465-73. PubMed ID: 5053469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutant of Pseudomonas putida with altered regulation of the enzymes for degradation of phenol and cresols.
    Wigmore GJ; Bayly RC
    Biochem Biophys Res Commun; 1974 Sep; 60(1):48-55. PubMed ID: 4371622
    [No Abstract]   [Full Text] [Related]  

  • 16. Constitutive synthesis of enzymes of the protocatechuate pathway and of the beta-ketoadipate uptake system in mutant strains of Pseudomonas putida.
    Parke D; Ornston LN
    J Bacteriol; 1976 Apr; 126(1):272-81. PubMed ID: 1262305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural comparison of gamma-carboxymuconolactone decarboxylase and muconolactone isomerase from Pseudomonas putida.
    Parke D
    Biochim Biophys Acta; 1979 May; 578(1):145-54. PubMed ID: 454663
    [No Abstract]   [Full Text] [Related]  

  • 18. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications.
    Sala-Trepat JM; Murray K; Williams PA
    Eur J Biochem; 1972 Jul; 28(3):347-56. PubMed ID: 4342908
    [No Abstract]   [Full Text] [Related]  

  • 19. Degradation of 4-hydroxyphenylacetate by Xanthobacter 124X. Physiological resemblance with other gram-negative bacteria.
    van den Tweel WJ; Janssens RJ; de Bont JA
    Antonie Van Leeuwenhoek; 1986; 52(4):309-18. PubMed ID: 3767351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolism of aromatic biogenic amines by Pseudomonas aeruginosa PAO1 via meta cleavage of homoprotocatechuic acid.
    Cuskey SM; Olsen RH
    J Bacteriol; 1988 Jan; 170(1):393-9. PubMed ID: 3121590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.