BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6769900)

  • 21. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol.
    Selmer T; Andrei PI
    Eur J Biochem; 2001 Mar; 268(5):1363-72. PubMed ID: 11231288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of 4-chlorophenylacetic acid by a Pseudomonas species.
    Klages U; Markus A; Lingens F
    J Bacteriol; 1981 Apr; 146(1):64-8. PubMed ID: 7217006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid.
    Kunz DA; Chapman PJ
    J Bacteriol; 1981 Apr; 146(1):179-91. PubMed ID: 7216999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phthalate metabolism in Pseudomonas testosteroni: accumulation of 4,5-dihydroxyphthalate by a mutant strain.
    Nakazawa T; Hayashi E
    J Bacteriol; 1977 Jul; 131(1):42-8. PubMed ID: 873893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans.
    Hareland WA; Crawford RL; Chapman PJ; Dagley S
    J Bacteriol; 1975 Jan; 121(1):272-85. PubMed ID: 234937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The regulation of the -ketoadipate pathway in Pseudomonas acidovorans and Pseudomonas testosteroni.
    Ornston MK; Ornston LN
    J Gen Microbiol; 1972 Dec; 73(3):455-64. PubMed ID: 4657135
    [No Abstract]   [Full Text] [Related]  

  • 27. Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways.
    Olivera ER; Reglero A; Martínez-Blanco H; Fernández-Medarde A; Moreno MA; Luengo JM
    Eur J Biochem; 1994 Apr; 221(1):375-81. PubMed ID: 8168524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase.
    Skinner MA; Cooper RA
    Arch Microbiol; 1982 Sep; 132(3):270-5. PubMed ID: 6756331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Microbial degradation and 4-chlorophenylacetic acid. Chemical synthesis of 3-chloro-4-hydroxy-, 4-chloro-3-hydroxy- and 4-chloro-2-hydroxyphenylacetic acid (author's transl)].
    Markus A; Klages U; Lingens F
    Hoppe Seylers Z Physiol Chem; 1982 Apr; 363(4):431-7. PubMed ID: 7076135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological consequences of starvation in Pseudomonas putida: degradation of intracellular protein and loss of activity of the inducible enzymes of L-arginine catabolism.
    Fan CL; Rodwell VW
    J Bacteriol; 1975 Dec; 124(3):1302-11. PubMed ID: 1194237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism of naphthalene, 2-methylnaphthalene, salicylate, and benzoate by Pseudomonas PG: regulation of tangential pathways.
    Williams PA; Catterall FA; Murray K
    J Bacteriol; 1975 Nov; 124(2):679-85. PubMed ID: 1184575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and properties of 4-hydroxyphenylacetic acid 3-hydroxylase from Pseudomonas putida.
    Raju SG; Kamath AV; Vaidyanathan CS
    Biochem Biophys Res Commun; 1988 Jul; 154(2):537-43. PubMed ID: 3401220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of arginine and pyrimidine biosynthesis in Pseudomonas putida.
    Condon S; Collins JK; O'donovan GA
    J Gen Microbiol; 1976 Feb; 92(2):375-83. PubMed ID: 176312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways.
    Feist CF; Hegeman GD
    J Bacteriol; 1969 Nov; 100(2):869-77. PubMed ID: 5354952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of side-chain substituents on the position of cleavage of the benzene ring by Pseudomonas fluorescens.
    Seidman MM; Toms A; Wood JM
    J Bacteriol; 1969 Mar; 97(3):1192-7. PubMed ID: 5776526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7.
    Muraki T; Taki M; Hasegawa Y; Iwaki H; Lau PC
    Appl Environ Microbiol; 2003 Mar; 69(3):1564-72. PubMed ID: 12620844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acyloin formation by benzoylformate decarboxylase from Pseudomonas putida.
    Wilcocks R; Ward OP; Collins S; Dewdney NJ; Hong Y; Prosen E
    Appl Environ Microbiol; 1992 May; 58(5):1699-704. PubMed ID: 1622241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.
    Hopper DJ; Taylor DG
    J Bacteriol; 1975 Apr; 122(1):1-6. PubMed ID: 1123316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. p-cymene pathway in Pseudomonas putida: initial reactions.
    DeFrank JJ; Ribbons DW
    J Bacteriol; 1977 Mar; 129(3):1356-64. PubMed ID: 845117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arginine decarboxylase from a Pseudomonas species.
    Rosenfeld HJ; Roberts J
    J Bacteriol; 1976 Feb; 125(2):601-7. PubMed ID: 1382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.