These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6770084)

  • 21. Developmental changes in delayed rectifier K+ currents in the muscular- and neural-type blastomere of ascidian embryos.
    Shidara M; Okamura Y
    J Physiol; 1991 Nov; 443():277-305. PubMed ID: 1822529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Consequences of CO2 acidosis for transmembrane Na+ transport and membrane current in rabbit cardiac Purkinje fibres.
    Bielen FV; Bosteels S; Verdonck F
    J Physiol; 1990 Aug; 427():325-45. PubMed ID: 2120426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pattern regulation in isolated halves and blastomeres of early Xenopus laevis.
    Kageura H; Yamana K
    J Embryol Exp Morphol; 1983 Apr; 74():221-34. PubMed ID: 6886596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Midblastula transition (MBT) of the cell cycles in the yolk and pigment granule-free translucent blastomeres obtained from centrifuged Xenopus embryos.
    Iwao Y; Uchida Y; Ueno S; Yoshizaki N; Masui Y
    Dev Growth Differ; 2005 Jun; 47(5):283-94. PubMed ID: 16026537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The intracellular pH of frog skeletal muscle: its regulation in hypertonic solutions.
    Abercrombie RF; Roos A
    J Physiol; 1983 Dec; 345():189-204. PubMed ID: 6420547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The distribution of sodium and potassium in amphibian embryos during early development.
    Slack C; Warner AE; Warren RL
    J Physiol; 1973 Jul; 232(2):297-312. PubMed ID: 4737869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes.
    Nakhoul NL; Davis BA; Romero MF; Boron WF
    Am J Physiol; 1998 Feb; 274(2):C543-8. PubMed ID: 9486145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct measurement of intracellular pH and buffering power in smooth muscle cells of guinea-pig vas deferens.
    Aickin CC
    J Physiol; 1984 Apr; 349():571-85. PubMed ID: 6429320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon dioxide, membrane potential and intracellular potassium activity in frog skeletal muscle.
    Huguenin F; Reber W; Zeuthen T
    J Physiol; 1980 Jun; 303():139-52. PubMed ID: 6776259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system.
    Deitmer JW; Szatkowski M
    J Physiol; 1990 Feb; 421():617-31. PubMed ID: 2112195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GABA- and glycine-mediated fall of intracellular pH in rat medullary neurons in situ.
    Lückermann M; Trapp S; Ballanyi K
    J Neurophysiol; 1997 Apr; 77(4):1844-52. PubMed ID: 9114240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pH sensitivity of the chloride conductance of frog skeletal muscle.
    Hutter OF; Warner AE
    J Physiol; 1967 Apr; 189(3):403-25. PubMed ID: 6040154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular pH of snail neurones measured with a new pH-sensitive glass mirco-electrode.
    Thomas RC
    J Physiol; 1974 Apr; 238(1):159-80. PubMed ID: 4838803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A change from HCO3(-)-CO2- to hepes-buffered medium modifies membrane properties of rat CA1 pyramidal neurones in vitro.
    Church J
    J Physiol; 1992 Sep; 455():51-71. PubMed ID: 1336555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech.
    Deitmer JW; Schlue WR
    J Physiol; 1987 Jul; 388():261-83. PubMed ID: 2821243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes of intracellular pH due to repetitive stimulation of single fibres from mouse skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1992 Apr; 449():49-71. PubMed ID: 1522520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis.
    Kai M; Kaito C; Fukamachi H; Higo T; Takayama E; Hara H; Ohya Y; Igarashi K; Shiokawa K
    Cell Res; 2003 Jun; 13(3):147-58. PubMed ID: 12862315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of respiratory and non-respiratory (metabolic) changes of extracellular pH value on intracellular pH value of various rat tissues in vivo. Relations between extra- and intracellular acid-base balance in clinically normal and extreme ranges. I].
    Rothe KF
    Anasth Intensivther Notfallmed; 1984 Aug; 19(4):184-90. PubMed ID: 6437266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic inter-relationships of intracellular pH measured by double-barrelled micro-electrodes in perfused rat liver.
    Cohen RD; Henderson RM; Iles RA; Smith JA
    J Physiol; 1982 Sep; 330():69-80. PubMed ID: 6816922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bicarbonate abolishes intracellular alkalinization in mitogen-stimulated 3T3 cells.
    Szwergold BS; Brown TR; Freed JJ
    J Cell Physiol; 1989 Feb; 138(2):227-35. PubMed ID: 2493002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.