BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 6770736)

  • 1. Bifunctional aryl azides as probes of the active sites of enzymes.
    Hixson SH; Brownie TF; Chua CC; Crapster BB; Satlin LM; Hixson SS; Boyce CO; Ehrich M; Novak EK
    Ann N Y Acad Sci; 1980; 346():104-14. PubMed ID: 6770736
    [No Abstract]   [Full Text] [Related]  

  • 2. On the physiological significance of positive and negative co-operativity.
    Ghosh R
    J Theor Biol; 1981 Nov; 93(2):395-401. PubMed ID: 7038313
    [No Abstract]   [Full Text] [Related]  

  • 3. Photodependent incorporation of arylazido-beta-alanyl-NAD+ into the coenzyme binding site of yeast glyceraldehyde-3-phosphate dehydrogenase.
    Bayne S; Sund H; Guillory RJ
    Biochimie; 1981 Jul; 63(7):569-73. PubMed ID: 7025921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of adenine ring and adenine ribose of nicotinamide adenine dinucleotide in binding and catalysis with alcohol, lactate, and glyceraldehyde-3-phosphate dehydrogenases.
    Suhadolnik RJ; Lennon MB; Uematsu T; Monahan JE; Baur R
    J Biol Chem; 1977 Jun; 252(12):4125-33. PubMed ID: 193857
    [No Abstract]   [Full Text] [Related]  

  • 5. Use of immobilized enzymes for synthetic purposes.
    Marshall DL
    Adv Exp Med Biol; 1974; 42(0):345-68. PubMed ID: 4367331
    [No Abstract]   [Full Text] [Related]  

  • 6. Reaction of p-azidophenacyl iodoacetate, a photolabile reagent, with yeast alcohol dehydrogenase.
    Hixson SH; Burroughs SF; Caputo TM; Crapster BB; Daly MV; Lowrie AW; Wasko ML
    Arch Biochem Biophys; 1979 Jan; 192(1):296-301. PubMed ID: 373630
    [No Abstract]   [Full Text] [Related]  

  • 7. [Comparative study of glyceraldehyde-3-phosphate dehydrogenases isolated from rabbit skeletal muscles and baker's yeast using cationic fluorescent probes].
    Klichko VI; Ivanov MV; Nagradova NK
    Biokhimiia; 1986 Sep; 51(9):1465-75. PubMed ID: 3533163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-of-the sites reactivity in the catalytic mechanism of yeast glyceraldehyde 3-phosphate dehydrogenase.
    Stallcup WB; Koshland DE
    J Mol Biol; 1973 Oct; 80(1):77-91. PubMed ID: 4361748
    [No Abstract]   [Full Text] [Related]  

  • 9. [Fluorimetric study of immobilized yeast D-glyceraldehyde-3-phosphatase and its subunits. Binding of NAD+].
    Muronets VI; Ashmarina DI; Permiakov EA; Nagradova NK
    Dokl Akad Nauk SSSR; 1987; 293(3):732-6. PubMed ID: 3556120
    [No Abstract]   [Full Text] [Related]  

  • 10. Stereospecificity of hydrogen transfer by phosphoglycerate dehydrogenase.
    Winicov I
    Biochim Biophys Acta; 1975 Aug; 397(2):288-93. PubMed ID: 168922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horse liver alcohol dehydrogenase. The primary structure of an N-terminal part of the protein chain of the ethanol-active isoenzyme.
    Jörnvall H
    Eur J Biochem; 1970 Jul; 14(3):521-34. PubMed ID: 4920893
    [No Abstract]   [Full Text] [Related]  

  • 12. Measurements of the concentration of active sites in preparations of yeast alcohol dehydrogenase.
    Dickinson M
    Eur J Biochem; 1974 Jan; 41(1):31-6. PubMed ID: 4361286
    [No Abstract]   [Full Text] [Related]  

  • 13. Identification of the arylazido-beta-alanyl-NAD+-modified site in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by microsequencing and fast atom bombardment mass spectrometry.
    Chen S; Lee TD; Legesse K; Shively JE
    Biochemistry; 1986 Sep; 25(19):5391-5. PubMed ID: 3778866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P-Azidophenacyl bromide, a versatile photolabile bifunctional reagent. Reaction with glyceraldehyde-3-phosphate dehydrogenase.
    Hixson SH; Hixson SS
    Biochemistry; 1975 Sep; 14(19):4251-4. PubMed ID: 1237309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between fluorescence and conformation of epsilonNAD+ bound to dehydrogenases.
    Luisi PL; Baici A; Bonner FJ; Aboderin AA
    Biochemistry; 1975 Jan; 14(2):362-8. PubMed ID: 164204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide-binding site data and the origin of the genetic code.
    Walker GW
    Biosystems; 1977 Sep; 9(2-3):139-50. PubMed ID: 907807
    [No Abstract]   [Full Text] [Related]  

  • 17. Binding of NAD+ to rabbit-muscle glyceraldehydephosphate dehydrogenase. The use of N-methylnicotinamidium chloride as a spectral and conformational probe.
    Boers W; Verhoeven JW
    Biochim Biophys Acta; 1973 Nov; 328(1):1-9. PubMed ID: 4357562
    [No Abstract]   [Full Text] [Related]  

  • 18. Subunit interactions in glyceraldehyde-3-phosphate dehydrogenases. Their involvement in nucleotide binding and cooperativity.
    Scheek RM; Kalkman ML; Berden JA; Slater EC
    Biochim Biophys Acta; 1980 Jun; 613(2):275-91. PubMed ID: 7004489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinetic study on the binding of monomeric and polymeric derivatives of NAD+ to yeast alcohol dehydrogenase.
    Yamazaki Y; Maeda H; Satoh A; Hiromi K
    J Biochem; 1984 Jan; 95(1):109-15. PubMed ID: 6368531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential arginine residues in D-glyceraldehyde-3-phosphate dehydrogenase.
    Nagradova NK; Asryants RA
    Biochim Biophys Acta; 1975 Mar; 386(1):365-8. PubMed ID: 164934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.