These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6770844)

  • 1. Influence of beta-alanine on ultrastructure, tanning, and melanization of Drosophila melanogaster cuticles.
    Jacobs ME
    Biochem Genet; 1980 Feb; 18(1-2):65-76. PubMed ID: 6770844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of beta-alanine on mating and territorialism in Drosophila melanogaster.
    Jacobs ME
    Behav Genet; 1978 Nov; 8(6):487-502. PubMed ID: 103533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative determination of catecholic degradation products from insect sclerotized cuticles.
    Andersen SO
    Insect Biochem Mol Biol; 2008 Sep; 38(9):877-82. PubMed ID: 18675913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations affecting beta-alanine metabolism influence inducibility of the 93D puff by heat shock in Drosophila melanogaster.
    Lakhotia SC; Chowdhuri DK; Burma PK
    Chromosoma; 1990 Aug; 99(4):296-305. PubMed ID: 2119984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Black cells phenotype is caused by a point mutation in the Drosophila pro-phenoloxidase 1 gene that triggers melanization and hematopoietic defects.
    Neyen C; Binggeli O; Roversi P; Bertin L; Sleiman MB; Lemaitre B
    Dev Comp Immunol; 2015 Jun; 50(2):166-74. PubMed ID: 25543001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Drosophila black enigma: the molecular and behavioural characterization of the black1 mutant allele.
    Phillips AM; Smart R; Strauss R; Brembs B; Kelly LE
    Gene; 2005 May; 351():131-42. PubMed ID: 15878647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster.
    Wright TR
    Adv Genet; 1987; 24():127-222. PubMed ID: 3124532
    [No Abstract]   [Full Text] [Related]  

  • 8. Beta-alanine used by ebony and normal drosophila melanogaster with notes on glucose, uracil, dopa, and dopamine.
    Jacobs ME
    Biochem Genet; 1968 Jan; 1(3):267-75. PubMed ID: 5707676
    [No Abstract]   [Full Text] [Related]  

  • 9. A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster.
    Davis MM; O'Keefe SL; Primrose DA; Hodgetts RB
    Development; 2007 Dec; 134(24):4395-404. PubMed ID: 18003740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster.
    Moussian B; Schwarz H; Bartoszewski S; Nüsslein-Volhard C
    J Morphol; 2005 Apr; 264(1):117-30. PubMed ID: 15747378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,2-dehydro-N-beta-alanyldopamine as a new intermediate in insect cuticular sclerotization.
    Ricketts D; Sugumaran M
    J Biol Chem; 1994 Sep; 269(35):22217-21. PubMed ID: 8071347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti.
    Thomas P; Kenny N; Eyles D; Moreira LA; O'Neill SL; Asgari S
    Dev Comp Immunol; 2011 Mar; 35(3):360-5. PubMed ID: 21075139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of melanization of tobacco hornworm larval cuticle in vitro.
    Hiruma K; Riddiford LM
    J Exp Zool; 1984 Jun; 230(3):393-403. PubMed ID: 6431050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholamine metabolism and in vitro induction of premature cuticle melanization in wild type and pigmentation mutants of Drosophila melanogaster.
    Walter MF; Zeineh LL; Black BC; McIvor WE; Wright TR; Biessmann H
    Arch Insect Biochem Physiol; 1996; 31(2):219-33. PubMed ID: 8580497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.
    Chandran R; Williams L; Hung A; Nowlin K; LaJeunesse D
    Micron; 2016 Mar; 82():74-85. PubMed ID: 26774746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the enzymes involved in puparial cuticle sclerotization in Drosophila melanogaster.
    Sugumaran M; Giglio L; Kundzicz H; Saul S; Semensi V
    Arch Insect Biochem Physiol; 1992; 19(4):271-83. PubMed ID: 1600191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-alanine transaminase activity in black and suppressor of black mutations of Drosophila melanogaster.
    Weber JP; Bolin RJ; Hixon MS; Sherald AF
    Biochim Biophys Acta; 1992 Jan; 1115(3):181-6. PubMed ID: 1739732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neuropeptide bursicon acts in cuticle metabolism.
    Dong S; Zhang H; Chen X; Stanley D; Yu X; Song Q
    Arch Insect Biochem Physiol; 2015 Jun; 89(2):87-97. PubMed ID: 25821138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns.
    True JR; Edwards KA; Yamamoto D; Carroll SB
    Curr Biol; 1999 Dec; 9(23):1382-91. PubMed ID: 10607562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron diffraction and high-resolution imaging on highly-crystalline β-chitin microfibril.
    Ogawa Y; Kimura S; Wada M
    J Struct Biol; 2011 Oct; 176(1):83-90. PubMed ID: 21771660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.