These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6771011)

  • 1. Ca++-induced structural changes in photoreceptor microvilli of Diptera.
    Williams DS
    Cell Tissue Res; 1980; 206(2):225-32. PubMed ID: 6771011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twisted rhabdomeres in the compound eye of a tipulid fly (Diptera).
    Williams DS
    Cell Tissue Res; 1981; 217(3):625-32. PubMed ID: 7249053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhabdom size and photoreceptor membrane turnover in a muscoid fly.
    Williams DS
    Cell Tissue Res; 1982; 226(3):629-39. PubMed ID: 7139695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution SEM of cultured cells: preparatory procedures.
    Arro E; Collins VP; Brunk UT
    Scan Electron Microsc; 1981; (Pt 2):159-68. PubMed ID: 6275496
    [No Abstract]   [Full Text] [Related]  

  • 5. Disruption of insect photoreceptor membrane by divalent ions: dissimilar sensitivity of light- and dark-adapted mosquito rhabdomeres.
    White RH; Michaud NA
    Cell Tissue Res; 1981; 216(2):403-11. PubMed ID: 7226214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A labile, Ca2+-dependent cytoskeleton in rhabdomeral microvilli of blowflies.
    Blest AD; Stowe S; Eddey W
    Cell Tissue Res; 1982; 223(3):553-73. PubMed ID: 7201347
    [No Abstract]   [Full Text] [Related]  

  • 7. Extracellular shedding of photoreceptor membrane in the open rhabdom of a tipulid fly.
    Williams DS; Blest AD
    Cell Tissue Res; 1980; 205(3):423-38. PubMed ID: 7357581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of various fixatives on the relative thickness of cellular membranes in the ventral lobe of the rat prostate.
    Pelttari A; Helminen HJ
    Histochem J; 1979 Sep; 11(5):599-611. PubMed ID: 116994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ fixation of cultured mouse peritoneal exudate cells: comparison of fixation methods.
    Morris RE; Ciraolo GM; Cohen DA; Bubel HC
    In Vitro; 1980 Feb; 16(2):136-46. PubMed ID: 6767655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of adequate fixation in preservation of membrane ultrastructure.
    Luftig RB; McMillan PN
    Int Rev Cytol Suppl; 1981; 12():309-25. PubMed ID: 6788724
    [No Abstract]   [Full Text] [Related]  

  • 11. Differential effects of primary fixation with glutaraldehyde and osmium upon the membranous systems of the strial and external sulcus cells.
    Santos-Sacchi J
    Acta Otolaryngol; 1978; 86(1-2):56-63. PubMed ID: 99973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for removing precipitate from ultrathin sections resulting from glutaraldehyde-osmium tetroxide fixation.
    Ellis EA; Anthony DW
    Stain Technol; 1979 Sep; 54(5):282-5. PubMed ID: 230617
    [No Abstract]   [Full Text] [Related]  

  • 13. The local deletion of a microvillar cytoskeleton from photoreceptors of tipulid flies during membrane turnover.
    Blest AD; Stowe S; Eddey W; Williams DS
    Proc R Soc Lond B Biol Sci; 1982 Jul; 215(1201):469-79. PubMed ID: 6127716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Appearances of microtubules after various fixative procedures, and comparison with the appearances of tobacco mosaic virus.
    Forer A
    J Cell Sci; 1975 Dec; 19(3):579-605. PubMed ID: 54362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fixation of nuclei and chromosomes.
    Skaer RJ; Whytock S
    J Cell Sci; 1976 Jan; 20(1):221-31. PubMed ID: 814128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of glutaraldehyde and-or osmium tetroxide on cell volume, ion content, mechanical stability, and membrane permeability of Ehrlich ascites tumor cells.
    Penttila A; Kalimo H; Trump BF
    J Cell Biol; 1974 Oct; 63(1):197-214. PubMed ID: 4138889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of glutaraldehyde fixative osmolarities on smooth muscle cell volume, and osmotic reactivity of the cells after fixation.
    Lee RM; McKenzie R; Kobayashi K; Garfield RE; Forrest JB; Daniel EE
    J Microsc; 1982 Jan; 125(Pt 1):77-88. PubMed ID: 6806478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distribution of actin immunoreactivity in rhabdomeres of tipulid flies in relation to extracellular membrane shedding.
    Blest AD; Stowe S; Clausen JA; Carter M
    Cell Tissue Res; 1991 Sep; 265(3):465-72. PubMed ID: 1786593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in epidermal structure as function of different fixation methods. A stereological and morphological study.
    Lindberg M
    J Submicrosc Cytol; 1983 Apr; 15(2):549-61. PubMed ID: 6406681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-fracture studies of the developing cell surface. II. Particle-free membrane blisters on glutaraldehyde-fixed corneal fibroblasts are artefacts.
    Hasty DL; Hay ED
    J Cell Biol; 1978 Sep; 78(3):756-68. PubMed ID: 100501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.