These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 6771247)

  • 21. In vitro regulation of single collagen fibril length by buffer compositions and temperature.
    Liu MY; Yeh ML; Luo ZP
    Biomed Mater Eng; 2005; 15(6):413-20. PubMed ID: 16308457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy barriers for HET-s prion forming domain amyloid formation.
    Sabaté R; Castillo V; Espargaró A; Saupe SJ; Ventura S
    FEBS J; 2009 Sep; 276(18):5053-64. PubMed ID: 19682303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleation and propagation of the collagen triple helix in single-chain and trimerized peptides: transition from third to first order kinetics.
    Boudko S; Frank S; Kammerer RA; Stetefeld J; Schulthess T; Landwehr R; Lustig A; Bächinger HP; Engel J
    J Mol Biol; 2002 Mar; 317(3):459-70. PubMed ID: 11922677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature dependence of collagen fluorescence.
    Menter JM
    Photochem Photobiol Sci; 2006 Apr; 5(4):403-10. PubMed ID: 16583021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Echinoderm collagen fibrils grow by surface-nucleation-and-propagation from both centers and ends.
    Trotter JA; Kadler KE; Holmes DF
    J Mol Biol; 2000 Jul; 300(3):531-40. PubMed ID: 10884349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro.
    Brightman AO; Rajwa BP; Sturgis JE; McCallister ME; Robinson JP; Voytik-Harbin SL
    Biopolymers; 2000 Sep; 54(3):222-34. PubMed ID: 10861383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biophysical behavior of Scomberoides commersonianus skin collagen.
    Kolli N; Joseph KT; Ramasami T
    J Biochem Mol Biol Biophys; 2002 Jun; 6(3):203-8. PubMed ID: 12186755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A solid-state NMR study of the fast and slow dynamics of collagen fibrils at varying hydration levels.
    Reichert D; Pascui O; deAzevedo ER; Bonagamba TJ; Arnold K; Huster D
    Magn Reson Chem; 2004 Feb; 42(2):276-84. PubMed ID: 14745808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fibrous long spacing type collagen fibrils have a hierarchical internal structure.
    Wen CK; Goh MC
    Proteins; 2006 Jul; 64(1):227-33. PubMed ID: 16609970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Type I collagen N-telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis.
    Malone JP; George A; Veis A
    Proteins; 2004 Feb; 54(2):206-15. PubMed ID: 14696182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation.
    Foderà V; Cataldo S; Librizzi F; Pignataro B; Spiccia P; Leone M
    J Phys Chem B; 2009 Aug; 113(31):10830-7. PubMed ID: 19588943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Temperature relationship of the NMR 1H spectrum of hydrated collagen].
    Meshalkin IuP; Gabuda SP; Rzhavin AF
    Biofizika; 1982; 27(3):375-9. PubMed ID: 7093316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The C-terminal extrahelical peptide of type I collagen and its role in fibrillogenesis in vitro.
    Capaldi MJ; Chapman JA
    Biopolymers; 1982 Nov; 21(11):2291-313. PubMed ID: 7171738
    [No Abstract]   [Full Text] [Related]  

  • 36. Role of hydrophobic interactions in collagen fibril formation: effect of alkylureas in vitro.
    Suarez G; Veliz M; Nagel RL
    Arch Biochem Biophys; 1980 Dec; 205(2):422-7. PubMed ID: 7469419
    [No Abstract]   [Full Text] [Related]  

  • 37. In vitro apatite induction by osteopontin: interfacial energy for hydroxyapatite nucleation on osteopontin.
    Ito S; Saito T; Amano K
    J Biomed Mater Res A; 2004 Apr; 69(1):11-6. PubMed ID: 14999746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy.
    Cisneros DA; Hung C; Franz CM; Muller DJ
    J Struct Biol; 2006 Jun; 154(3):232-45. PubMed ID: 16600632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histological evidence for the role of mechanical stress in modulating thermal denaturation of collagen.
    Wells PB; Thomsen S; Jones MA; Baek S; Humphrey JD
    Biomech Model Mechanobiol; 2005 Dec; 4(4):201-10. PubMed ID: 16261328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variations in collagen fibril structure in tendons.
    Brodsky B; Eikenberry EF; Belbruno KC; Sterling K
    Biopolymers; 1982 May; 21(5):935-51. PubMed ID: 7082771
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.