BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 6771336)

  • 1. Recent advances in the chemistry of melanogenesis in mammals.
    Prota G
    J Invest Dermatol; 1980 Jul; 75(1):122-7. PubMed ID: 6771336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical characterization of pheomelanogenesis starting from dihydroxyphenylalanine or tyrosine and cysteine. Effects of tyrosinase and cysteine concentrations and reaction time.
    Ozeki H; Ito S; Wakamatsu K; Ishiguro I
    Biochim Biophys Acta; 1997 Oct; 1336(3):539-48. PubMed ID: 9367182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis.
    Rzepka Z; Buszman E; Beberok A; Wrześniok D
    Postepy Hig Med Dosw (Online); 2016 Jun; 70(0):695-708. PubMed ID: 27356601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of sulfhydryl compounds into melanins in vitro.
    Ito S; Imai Y; Jimbow K; Fujita K
    Biochim Biophys Acta; 1988 Jan; 964(1):1-7. PubMed ID: 3120789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of sulfhydryl compounds in mammalian melanogenesis: the effect of cysteine and glutathione upon tyrosinase and the intermediates of the pathway.
    Jara JR; Aroca P; Solano F; Martinez JH; Lozano JA
    Biochim Biophys Acta; 1988 Nov; 967(2):296-303. PubMed ID: 2903772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical characterization of hair melanins in various coat-color mutants of mice.
    Ozeki H; Ito S; Wakamatsu K; Hirobe T
    J Invest Dermatol; 1995 Sep; 105(3):361-6. PubMed ID: 7665913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical characterization of melanins in sheep wool and human hair.
    Ozeki H; Ito S; Wakamatsu K
    Pigment Cell Res; 1996 Apr; 9(2):51-7. PubMed ID: 8857665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of melanins and melanosomes produced by various coat color mutants.
    Prota G; Lamoreux ML; Muller J; Kobayashi T; Napolitano A; Vincensi MR; Sakai C; Hearing VJ
    Pigment Cell Res; 1995 Jun; 8(3):153-63. PubMed ID: 7567792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MITF-M regulates melanogenesis in mouse melanocytes.
    Chen T; Zhao B; Liu Y; Wang R; Yang Y; Yang L; Dong C
    J Dermatol Sci; 2018 Jun; 90(3):253-262. PubMed ID: 29496358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemistry of mixed melanogenesis--pivotal roles of dopaquinone.
    Ito S; Wakamatsu K
    Photochem Photobiol; 2008; 84(3):582-92. PubMed ID: 18435614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine-dependent 5-S-cysteinyldopa formation and its regulation by glutathione in normal epidermal melanocytes.
    Benathan M; Labidi F
    Arch Dermatol Res; 1996 Oct; 288(11):697-702. PubMed ID: 8931873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis.
    Wakamatsu K; Zippin JH; Ito S
    Pigment Cell Melanoma Res; 2021 Jul; 34(4):730-747. PubMed ID: 33751833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-regulation of melanin precursors and tyrosinase in human pigment cells: roles of cysteine and glutathione.
    Benathan M; Virador V; Furumura M; Kobayashi N; Panizzon RG; Hearing VJ
    Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):981-90. PubMed ID: 10644002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of pH in the melanin biosynthesis pathway.
    Cánovas FG; García-Carmona F; Sánchez JV; Pastor JL; Teruel JA
    J Biol Chem; 1982 Aug; 257(15):8738-44. PubMed ID: 6807981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possible role for melanin precursors in regulating both pigmentation and proliferation of melanocytes.
    Pawelek J; Bolognia J; McLane J; Murray M; Osber M; Słominski A
    Prog Clin Biol Res; 1988; 256():143-54. PubMed ID: 3130637
    [No Abstract]   [Full Text] [Related]  

  • 16. Recent progresses in understanding pigmentation.
    Kosmadaki MG; Naif A; Hee-Young P
    G Ital Dermatol Venereol; 2010 Feb; 145(1):47-55. PubMed ID: 20197745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic control of pigmentation in mammals.
    Hearing VJ; Tsukamoto K
    FASEB J; 1991 Nov; 5(14):2902-9. PubMed ID: 1752358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. alpha-Methyl-p-tyrosine inhibits latanoprost-induced melanogenesis in vitro.
    Drago F; Marino A; La Manna C
    Exp Eye Res; 1999 Jan; 68(1):85-90. PubMed ID: 9986745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian tyrosinase--the critical regulatory control point in melanocyte pigmentation.
    Hearing VJ; Jiménez M
    Int J Biochem; 1987; 19(12):1141-7. PubMed ID: 3125075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate identity in mammalian melanogenesis.
    Yu RJ; Van Scott EJ
    J Invest Dermatol; 1973 Apr; 60(4):234-7. PubMed ID: 4121529
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.