BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6771852)

  • 1. Hemolymph acid-base balance of the crayfish Astacus leptodactylus as a function of the oxygenation and the acid-base balance of the ambient water.
    Dejours P; Armand J
    Respir Physiol; 1980 Jul; 41(1):1-11. PubMed ID: 6771852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of ambient chloride concentration changes on branchial chloride-bicarbonate exchanges and hemolymph acid-base balance of crayfish.
    Dejours P; Armand J; Beekenkamp H
    Respir Physiol; 1982 Jun; 48(3):375-86. PubMed ID: 7123021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crayfish respiration as a function of water oxygenation.
    Dejours P; Beekenkamp H
    Respir Physiol; 1977 Jun; 30(1-2):241-51. PubMed ID: 17899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood acid-base balance as a function of water oxygenation: a study at two different ambient CO2 levels in the dogfish, Scyliorhinus canicula.
    Truchot JP; Toulmond A; Dejours P
    Respir Physiol; 1980 Jul; 41(1):13-28. PubMed ID: 6771856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ventilatory regulation of extracellular pH in crayfish exposed to changes in water titration alkalinity and NaCl concentration.
    Burtin B; Massabuau JC; Dejours P
    Respir Physiol; 1986 Aug; 65(2):235-43. PubMed ID: 3764124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian rhythm of extracellular pH in crayfish at different levels of oxygenation.
    Sakakibara Y; Burtin B; Massabuau JC
    Respir Physiol; 1987 Sep; 69(3):359-67. PubMed ID: 3659603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogeny of osmoregulation in the crayfish Astacus leptodactylus.
    Susanto GN; Charmantier G
    Physiol Biochem Zool; 2000; 73(2):169-76. PubMed ID: 10801395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute exposure to chlorpyrifos and glyphosate induces changes in hemolymph biochemical parameters in the crayfish, Astacus leptodactylus (Eschscholtz, 1823).
    Banaee M; Akhlaghi M; Soltanian S; Gholamhosseini A; Heidarieh H; Fereidouni MS
    Comp Biochem Physiol C Toxicol Pharmacol; 2019 Aug; 222():145-155. PubMed ID: 31055068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventilation and respiratory gas exchanges of the lugworm Arenicola marina (L.) as functions of ambient PO2 (20-700 torr).
    Toulmond A; Tchernigovtzeff C
    Respir Physiol; 1984 Sep; 57(3):349-63. PubMed ID: 6441215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ventilation on acid-base balance and oxygenation in low blood-flow states.
    Idris AH; Staples ED; O'Brien DJ; Melker RJ; Rush WJ; Del Duca KD; Falk JL
    Crit Care Med; 1994 Nov; 22(11):1827-34. PubMed ID: 7956288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of water alkalinity on gill CO2 exchange and internal PCO2 in aquatic animals.
    Truchot JP; Forgue J
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):131-6. PubMed ID: 11253777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-sensitive chemoreceptors in the branchio-cardiac veins of the crayfish, Astacus leptodactylus.
    Ishii K; Ishii K; Massabuau JC; Dejours P
    Respir Physiol; 1989 Oct; 78(1):73-81. PubMed ID: 2813989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coagulation in the crayfish, Astacus leptodactylus: attempts to identify a fibrinogen-like factor in the hemolymph.
    Durliat M; Vranckx R
    Biol Bull; 1976 Dec; 151(3):467-77. PubMed ID: 828063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools.
    Truchot JP; Duhamel-Jouve A
    Respir Physiol; 1980 Mar; 39(3):241-54. PubMed ID: 6770427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nitrite exposure on acid-base balance, respiratory protein, and ion concentrations of giant freshwater prawn Macrobrachium rosenbergii at low pH.
    Chen JC; Lee Y
    Arch Environ Contam Toxicol; 1997 Oct; 33(3):290-7. PubMed ID: 9353207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrite toxicity to crayfish, Astacus leptodactylus, the effects of sublethal nitrite exposure on hemolymph nitrite, total hemocyte counts, and hemolymph glucose.
    Yildiz HY; Benli AC
    Ecotoxicol Environ Saf; 2004 Nov; 59(3):370-5. PubMed ID: 15388276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of ion transport in the gills of the crayfish Astacus leptodactylus esch.
    Bielawski J
    Comp Biochem Physiol B; 1971 Jul; 39(3):649-57. PubMed ID: 5122685
    [No Abstract]   [Full Text] [Related]  

  • 18. Non-equilibrium acid-base status in C. productus: role of exoskeletal carbonate buffers.
    Defur PL; Wilkes PR; McMahon BR
    Respir Physiol; 1980 Dec; 42(3):247-61. PubMed ID: 6784208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the acid-base status of dragonflies across their transition from breathing water to breathing air.
    Lee DJ; Matthews PGD
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31672724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotoxic, physiological and immunological effects caused by temperature increase, air exposure or food deprivation in freshwater crayfish Astacus leptodactylus.
    Malev O; Srut M; Maguire I; Stambuk A; Ferrero EA; Lorenzon S; Klobucar GI
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Nov; 152(4):433-43. PubMed ID: 20667483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.