BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 6772232)

  • 21. Prediction of bovine milk technological traits from mid-infrared spectroscopy analysis in dairy cows.
    Visentin G; McDermott A; McParland S; Berry DP; Kenny OA; Brodkorb A; Fenelon MA; De Marchi M
    J Dairy Sci; 2015 Sep; 98(9):6620-9. PubMed ID: 26188572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Composition and effect of blending of noncoagulating, poorly coagulating, and well-coagulating bovine milk from individual Danish Holstein cows.
    Frederiksen PD; Andersen KK; Hammershøj M; Poulsen HD; Sørensen J; Bakman M; Qvist KB; Larsen LB
    J Dairy Sci; 2011 Oct; 94(10):4787-99. PubMed ID: 21943730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micelle stability: kappa-casein structure and function.
    Creamer LK; Plowman JE; Liddell MJ; Smith MH; Hill JP
    J Dairy Sci; 1998 Nov; 81(11):3004-12. PubMed ID: 9839241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Grazing season and forage type influence goat milk composition and rennet coagulation properties.
    Inglingstad RA; Steinshamn H; Dagnachew BS; Valenti B; Criscione A; Rukke EO; Devold TG; Skeie SB; Vegarud GE
    J Dairy Sci; 2014; 97(6):3800-14. PubMed ID: 24704223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of pH adjustment on the composition and rennet-gelation properties of milk concentrates made from ultrafiltration and reverse osmosis.
    Lauzin A; Bérubé A; Britten M; Pouliot Y
    J Dairy Sci; 2019 May; 102(5):3939-3946. PubMed ID: 30852024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the A and B variants of both alpha s1- and kappa-casein on bovine casein micelle solvation and kappa-casein content.
    Anema SG; Creamer LK
    J Dairy Res; 1993 Nov; 60(4):505-16. PubMed ID: 8294607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fractionation by size of casein micelles on controlled-pore glass.
    Almlöf E; Larsson-Raźnikiewicz M; Lindqvist I; Munyua J
    Prep Biochem; 1977; 7(1):1-7. PubMed ID: 557794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of chymosin action on the hydrodynamic diameter of casein micelles.
    Walstra P; Bloomfield VA; Wei GJ; Jenness R
    Biochim Biophys Acta; 1981 Jul; 669(2):258-9. PubMed ID: 6793083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of porous glass chromatography for size-fractionation of bovine casein micelles.
    McNeill GP; Donnelly WJ
    J Dairy Res; 1987 Feb; 54(1):19-28. PubMed ID: 3819153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Addition of sodium caseinate to skim milk increases nonsedimentable casein and causes significant changes in rennet-induced gelation, heat stability, and ethanol stability.
    Lin Y; Kelly AL; O'Mahony JA; Guinee TP
    J Dairy Sci; 2017 Feb; 100(2):908-918. PubMed ID: 27988112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic comparison of equine and bovine milks on renneting.
    Uniacke-Lowe T; Chevalier F; Hem S; Fox PF; Mulvihill DM
    J Agric Food Chem; 2013 Mar; 61(11):2839-50. PubMed ID: 23414207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating rennet coagulation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making.
    Lu Y; McMahon DJ; Vollmer AH
    J Dairy Sci; 2017 Feb; 100(2):892-900. PubMed ID: 27988125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CPG-chromatography studies of the stability of casein micelles.
    Larsson-Raźnikiewicz M; Almlöf E; Ekstrand B
    J Dairy Res; 1979 Apr; 46(2):313-6. PubMed ID: 469059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rennet-induced gelation of concentrated milk in the presence of sodium caseinate: differences between milk concentration using ultrafiltration and osmotic stressing.
    Krishnankutty Nair P; Corredig M
    J Dairy Sci; 2015 Jan; 98(1):27-36. PubMed ID: 25468692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of controlled kappa-casein hydrolysis on rheological properties of acid milk gels.
    Gastaldi E; Trial N; Guillaume C; Bourret E; Gontard N; Cuq JL
    J Dairy Sci; 2003 Mar; 86(3):704-11. PubMed ID: 12703604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The rennet-induced clotting of para-kappa-casein revisited: inhibition experiments with pepstatin A.
    Brinkhuis J; Payens TA
    Biochim Biophys Acta; 1985 Dec; 832(3):331-6. PubMed ID: 3935174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Size and Stability of Native Fat Globules on the Formation of Milk Gel Induced by Rennet.
    Luo J; Wang Y; Guo H; Ren F
    J Food Sci; 2017 Mar; 82(3):670-678. PubMed ID: 28295325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glycosylation of κ-casein: genetic and nongenetic variation and effects on rennet coagulation properties of milk.
    Bonfatti V; Chiarot G; Carnier P
    J Dairy Sci; 2014; 97(4):1961-9. PubMed ID: 24508440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localization of glycosylated kappa-casein on thin sections of casein micelles by lectin-labelled gold markers.
    Horisberger M; Rouvet-Vauthey M
    Histochemistry; 1984; 80(6):523-6. PubMed ID: 6469710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of thermoresistant protease of Pseudomonas fluorescens on rennet coagulation properties and proteolysis of milk.
    Paludetti LF; Kelly AL; Gleeson D
    J Dairy Sci; 2020 May; 103(5):4043-4055. PubMed ID: 32147268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.