BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 6772626)

  • 1. Proton motive force during growth of Streptococcus lactis cells.
    Kashket ER; Blanchard AG; Metzger WC
    J Bacteriol; 1980 Jul; 143(1):128-34. PubMed ID: 6772626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of potassium ions on the electrical and pH gradients across the membrane of Streptococcus lactis cells.
    Kashket ER; Barker SL
    J Bacteriol; 1977 Jun; 130(3):1017-23. PubMed ID: 16864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton electrochemical gradients in washed cells of Nitrosomonas europaea and Nitrobacter agilis.
    Kumar S; Nicholas DJ
    J Bacteriol; 1983 Apr; 154(1):65-71. PubMed ID: 6833187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of sodium ions on the electrical and pH gradients across the membrane of Streptococcus lactis cells.
    Barker SL; Kashket ER
    J Supramol Struct; 1977; 6(3):383-8. PubMed ID: 22778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions.
    Kashket ER
    J Bacteriol; 1981 Apr; 146(1):369-76. PubMed ID: 6260743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium collapses the deltaP in yeast mitochondria while the rate of ATP synthesis is inhibited only partially: modulation by phosphate.
    Castrejón V; Parra C; Moreno R; Peña A; Uribe S
    Arch Biochem Biophys; 1997 Oct; 346(1):37-44. PubMed ID: 9328282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies.
    Dzbek J; Korzeniewski B
    J Biol Chem; 2008 Nov; 283(48):33232-9. PubMed ID: 18694940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intracellular pH of the thermophilic bacterium Thermoanaerobacter wiegelii during growth and production of fermentation acids.
    Cook GM
    Extremophiles; 2000 Oct; 4(5):279-84. PubMed ID: 11057912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP synthesis driven by a protonmotive force in Streptococcus lactis.
    Maloney PC; Wilson TH
    J Membr Biol; 1975-1976; 25(3-4):285-310. PubMed ID: 3650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-coupled accumulation of galactoside in Streptococcus lactis 7962.
    Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2866-9. PubMed ID: 4200725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proton motive force generated in Leuconostoc oenos by L-malate fermentation.
    Salema M; Lolkema JS; San Romão MV; Lourero Dias MC
    J Bacteriol; 1996 Jun; 178(11):3127-32. PubMed ID: 8655490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of reducing agents on the acidification capacity and the proton motive force of Lactococcus lactis ssp. cremoris resting cells.
    Waché Y; Riondet C; Diviès C; Cachon R
    Bioelectrochemistry; 2002 Sep; 57(2):113-8. PubMed ID: 12160606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1.
    Olsson K; Keis S; Morgan HW; Dimroth P; Cook GM
    J Bacteriol; 2003 Jan; 185(2):461-5. PubMed ID: 12511491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of lactose-citrate co-metabolism on the differences of growth and energetics in Leuconostoc lactis, Leuconostoc mesenteroides ssp. mesenteroides and Leuconostoc mesenteroides ssp. cremoris.
    Hache C; Cachon R; Wache Y; Belguendouz T; Riondet C; Deraedt A; Divies C
    Syst Appl Microbiol; 1999 Dec; 22(4):507-13. PubMed ID: 10794137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactic acid excretion by
    Dashper SG; Reynolds EC
    Microbiology (Reading); 1996 Jan; 142(1):33-39. PubMed ID: 33657745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic equivalence of transmembrane pH and electrical potential differences in ATP synthesis.
    Soga N; Kinosita K; Yoshida M; Suzuki T
    J Biol Chem; 2012 Mar; 287(12):9633-9. PubMed ID: 22253434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential.
    Riondet C; Cachon R; Waché Y; Alcaraz G; Diviès C
    Eur J Biochem; 1999 Jun; 262(2):595-9. PubMed ID: 10336647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton electrochemical gradient and phosphate potential in submitochondrial particles.
    Azzone GF; Pozzan T; Viola E; Arslan P
    Biochim Biophys Acta; 1978 Feb; 501(2):317-29. PubMed ID: 23158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.