These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 6772628)

  • 21. Effect of ultrasonication and thermal and pressure treatments, individually and combined, on inactivation of Bacillus cereus spores.
    Lv R; Zou M; Chantapakul T; Chen W; Muhammad AI; Zhou J; Ding T; Ye X; Liu D
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2329-2338. PubMed ID: 30627794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of germination of Bacillus cereus T spores by phenylglyoxal.
    Ram BP; Rana RS; Gollakota KG
    Folia Microbiol (Praha); 1979; 24(3):228-33. PubMed ID: 112015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal analysis of the spores of Bacillus cereus with special reference to heat activation.
    Maeda Y; Kagami I; Koga S
    Can J Microbiol; 1978 Nov; 24(11):1331-4. PubMed ID: 105794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring the wet-heat inactivation dynamics of single spores of Bacillus species by using Raman tweezers, differential interference contrast microscopy, and nucleic acid dye fluorescence microscopy.
    Zhang P; Kong L; Wang G; Setlow P; Li YQ
    Appl Environ Microbiol; 2011 Jul; 77(14):4754-69. PubMed ID: 21602365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of glucose 6-phosphate dehydrogenase during germination and outgrowth of Bacillus cereus T endospores.
    Orlowski M; Goldman M
    Biochem J; 1975 May; 148(2):259-68. PubMed ID: 168884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The release of dipicolinic acid during heating and its relation to the heat destruction of Bacillus stearothermophilus spores.
    Mallidis CG; Scholefield JS
    J Appl Bacteriol; 1985 Nov; 59(5):479-86. PubMed ID: 4086410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sporulation temperature affects initiation of germination and inactivation by high hydrostatic pressure of Bacillus cereus.
    Raso J; Barbosa-Cánovas G; Swanson BG
    J Appl Microbiol; 1998 Jul; 85(1):17-24. PubMed ID: 9721652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of fructose 1,6-diphosphate aldolases from spores and vegetative cells of Bacillus cereus.
    Sadoff HL; Hitchins AD; Celikkol E
    J Bacteriol; 1969 Jun; 98(3):1208-18. PubMed ID: 4977985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow-type electrodes.
    Ryang JH; Kim NH; Lee BS; Kim CT; Lee SH; Hwang IG; Rhee MS
    J Appl Microbiol; 2016 Jan; 120(1):175-84. PubMed ID: 26497155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of dipicolinic acid biosynthesis in sporulating Bacillus cereus. Characterization of enzymic changes and analysis of mutants.
    Forman M; Aronson A
    Biochem J; 1972 Feb; 126(3):503-13. PubMed ID: 4627586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat-induced temperature sensitivity of outgrowing Bacillus cereus spores.
    Johnson KM; Busta FF
    Appl Environ Microbiol; 1984 Apr; 47(4):768-74. PubMed ID: 6426390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The possible involvement of trypsin-like enzymes in germination of spores of Bacillus cereus T and Bacillus subtilis 168.
    Boschwitz H; Gofshtein-Gandman L; Halvorson HO; Keynan A; Milner Y
    J Gen Microbiol; 1991 May; 137(5):1145-53. PubMed ID: 1650815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of wet heat treatment on the structural and chemical components of Bacillus sporothermodurans spores.
    Tabit FT; Buys E
    Int J Food Microbiol; 2010 Jun; 140(2-3):207-13. PubMed ID: 20417981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of single heat-activated Bacillus spores using laser tweezers Raman spectroscopy.
    Zhang P; Setlow P; Li Y
    Opt Express; 2009 Sep; 17(19):16480-91. PubMed ID: 19770863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PATHWAYS OF GLUCOSE CATABOLISM IN BACILLUS CEREUS.
    GOLDMAN M; BLUMENTHAL HJ
    J Bacteriol; 1964 Feb; 87(2):377-86. PubMed ID: 14151060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of inhibitors of trypsin-like proteolytic enzymes Bacillus cereus T spore germination.
    Boschwitz H; Milner Y; Keynan A; Halvorson HO; Troll W
    J Bacteriol; 1983 Feb; 153(2):700-8. PubMed ID: 6401704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Memory of Germinant Stimuli in Bacterial Spores.
    Wang S; Faeder JR; Setlow P; Li YQ
    mBio; 2015 Nov; 6(6):e01859-15. PubMed ID: 26604257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slow leakage of Ca-dipicolinic acid from individual bacillus spores during initiation of spore germination.
    Wang S; Setlow P; Li YQ
    J Bacteriol; 2015 Mar; 197(6):1095-103. PubMed ID: 25583976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pressure inactivation of Bacillus endospores.
    Margosch D; Gänzle MG; Ehrmann MA; Vogel RF
    Appl Environ Microbiol; 2004 Dec; 70(12):7321-8. PubMed ID: 15574932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of Bacillus cereus spore lytic enzyme by a heat-labile non-dialyzable factor in spore extracts.
    Mencher JR; Blankenship LC
    Biochim Biophys Acta; 1971; 230(3):646-8. PubMed ID: 4996439
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.