These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 6772700)
21. Peptidomic analysis of human acquired enamel pellicle. Vitorino R; Calheiros-Lobo MJ; Williams J; Ferrer-Correia AJ; Tomer KB; Duarte JA; Domingues PM; Amado FM Biomed Chromatogr; 2007 Nov; 21(11):1107-17. PubMed ID: 17516463 [TBL] [Abstract][Full Text] [Related]
22. Phosphopeptides derived from human salivary acidic proline-rich proteins. Biological activities and concentration in saliva. Madapallimattam G; Bennick A Biochem J; 1990 Sep; 270(2):297-304. PubMed ID: 2169237 [TBL] [Abstract][Full Text] [Related]
23. Proteome analysis of glandular parotid and submandibular-sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Walz A; Stühler K; Wattenberg A; Hawranke E; Meyer HE; Schmalz G; Blüggel M; Ruhl S Proteomics; 2006 Mar; 6(5):1631-9. PubMed ID: 16402355 [TBL] [Abstract][Full Text] [Related]
24. Demonstration of proline-rich proteins in rabbit parotid saliva and partial characterization of some of the proteins. Rajan AI; Bennick A Arch Oral Biol; 1983; 28(5):431-9. PubMed ID: 6414444 [TBL] [Abstract][Full Text] [Related]
32. Human glandular salivas: their separate collection and analysis. Veerman EC; van den Keybus PA; Vissink A; Nieuw Amerongen AV Eur J Oral Sci; 1996 Aug; 104(4 ( Pt 1)):346-52. PubMed ID: 8930581 [TBL] [Abstract][Full Text] [Related]
33. [Immunological investigations on human parotid saliva in comparison with submandibular fluid (author's transl)]. Meyer P; Kleber RR Laryngol Rhinol Otol (Stuttg); 1978 Nov; 57(11):1017-22. PubMed ID: 723396 [TBL] [Abstract][Full Text] [Related]
34. Compositional analysis of human acquired enamel pellicle by mass spectrometry. Yao Y; Grogan J; Zehnder M; Lendenmann U; Nam B; Wu Z; Costello CE; Oppenheim FG Arch Oral Biol; 2001 Apr; 46(4):293-303. PubMed ID: 11269863 [TBL] [Abstract][Full Text] [Related]
35. Primary structure and possible origin of the non-glycosylated basic proline-rich protein of human submandibular/sublingual saliva. Robinson R; Kauffman DL; Waye MM; Blum M; Bennick A; Keller PJ Biochem J; 1989 Oct; 263(2):497-503. PubMed ID: 2688632 [TBL] [Abstract][Full Text] [Related]
37. Relationship between concentration of human salivary statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva. Hay DI; Smith DJ; Schluckebier SK; Moreno EC J Dent Res; 1984 Jun; 63(6):857-63. PubMed ID: 6429216 [TBL] [Abstract][Full Text] [Related]
38. Agglutinin and acidic proline-rich protein receptor patterns may modulate bacterial adherence and colonization on tooth surfaces. Carlén A; Bratt P; Stenudd C; Olsson J; Strömberg N J Dent Res; 1998 Jan; 77(1):81-90. PubMed ID: 9437403 [TBL] [Abstract][Full Text] [Related]
39. Molecular basis of salivary proline-rich protein and peptide synthesis: cell-free translations and processing of human and macaque statherin mRNAs and partial amino acid sequence of their signal peptides. Oppenheim FG; Hay DI; Smith DJ; Offner GD; Troxler RF J Dent Res; 1987 Feb; 66(2):462-6. PubMed ID: 3476566 [TBL] [Abstract][Full Text] [Related]
40. Phosphorylation of salivary proteins by salivary gland protein kinase. Madapallimattam G; Bennick A J Dent Res; 1986 Mar; 65(3):405-11. PubMed ID: 3007590 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]