These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 677309)

  • 41. Fetal fuels. IV. Regulation of branched-chain amino and keto acid metabolism in fetal brain.
    Shambaugh GE; Koehler RA
    Am J Physiol; 1981 Sep; 241(3):E200-7. PubMed ID: 7282922
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
    Schuster J; Binder S
    Plant Mol Biol; 2005 Jan; 57(2):241-54. PubMed ID: 15821880
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of glutamine transaminase K (GTK) in sulfur and alpha-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants.
    Cooper AJ
    Neurochem Int; 2004 Jun; 44(8):557-77. PubMed ID: 15016471
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolism of branched-chain amino acids in starved rats: the role of hepatic tissue.
    Holecek M; Sprongl L; Tilser I
    Physiol Res; 2001; 50(1):25-33. PubMed ID: 11300224
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of volatile compounds by Lactobacillus sakei from branched chain α-keto acids.
    Gutsche KA; Tran TB; Vogel RF
    Food Microbiol; 2012 Apr; 29(2):224-8. PubMed ID: 22202876
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ketoisocaproic acid, a metabolite of leucine, suppresses insulin-stimulated glucose transport in skeletal muscle cells in a BCAT2-dependent manner.
    Moghei M; Tavajohi-Fini P; Beatty B; Adegoke OA
    Am J Physiol Cell Physiol; 2016 Sep; 311(3):C518-27. PubMed ID: 27488662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative studies between rates of incorporation of branched-chain amino acids and their alpha-ketoanalogues into rat tissue proteins under different dietary conditions.
    Hauschildt S; Brand K
    J Nutr Sci Vitaminol (Tokyo); 1984 Apr; 30(2):143-52. PubMed ID: 6470832
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.
    Ganesan B; Seefeldt K; Weimer BC
    Appl Environ Microbiol; 2004 Nov; 70(11):6385-93. PubMed ID: 15528496
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transport of alpha-keto analogues of amino acids across blood-brain barrier in rats.
    Conn AR; Steele RD
    Am J Physiol; 1982 Oct; 243(4):E272-7. PubMed ID: 6751096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The placenta releases branched-chain keto acids into the umbilical and uterine circulations in the pregnant sheep.
    Smeaton TC; Owens JA; Kind KL; Robinson JS
    J Dev Physiol; 1989 Aug; 12(2):95-9. PubMed ID: 2621340
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amino acid metabolism by perfused rat hindquarter. Effects of insulin, leucine and 2-chloro-4-methylvalerate.
    Davis EJ; Lee SH
    Biochem J; 1985 Jul; 229(1):19-29. PubMed ID: 3899101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs.
    Wiltafsky MK; Pfaffl MW; Roth FX
    Br J Nutr; 2010 Apr; 103(7):964-76. PubMed ID: 20196890
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms of perfused kidney cytoprotection by alanine and glycine.
    Baines AD; Shaikh N; Ho P
    Am J Physiol; 1990 Jul; 259(1 Pt 2):F80-7. PubMed ID: 2375394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of non-proteinogenic amino acids from α-keto acid precursors with recombinant Corynebacterium glutamicum.
    Kim JY; Lee YA; Wittmann C; Park JB
    Biotechnol Bioeng; 2013 Nov; 110(11):2846-55. PubMed ID: 23737264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The metabolic fate of branched-chain amino acids and 2-oxo acids in rat muscle homogenates and diaphragms.
    Wagenmakers AJ; Salden HJ; Veerkamp JH
    Int J Biochem; 1985; 17(9):957-65. PubMed ID: 4065408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidation of branched chain amino acids by isolated hearts and diaphragms of the rat. The effect of fatty acids, glucose, and pyruvate respiration.
    Buse MG; Biggers JF; Friderici KH; Buse JF
    J Biol Chem; 1972 Dec; 247(24):8085-96. PubMed ID: 4640937
    [No Abstract]   [Full Text] [Related]  

  • 57. Alpha-keto and alpha-hydroxy branched-chain acid interrelationships in normal humans.
    Hoffer LJ; Taveroff A; Robitaille L; Mamer OA; Reimer ML
    J Nutr; 1993 Sep; 123(9):1513-21. PubMed ID: 8360777
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correlation between serum concentrations of the branched chain amino- and alpha-keto-acid and the distribution of the branched-chain fatty acids on rat skin surface.
    Oku H; Urahashi A; Chinen I
    J Nutr Sci Vitaminol (Tokyo); 1991 Jun; 37(3):297-311. PubMed ID: 1919814
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptic plasma membrane Na(+), K (+)-ATPase activity is significantly reduced by the alpha-keto acids accumulating in maple syrup urine disease in rat cerebral cortex.
    Wajner A; Bürger C; Dutra-Filho CS; Wajner M; de Souza Wyse AT; Wannmacher CM
    Metab Brain Dis; 2007 Mar; 22(1):77-88. PubMed ID: 17295076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of insulin on blood levels of branched chain keto and amino acids in man.
    Schauder P; Schröder K; Matthaei D; Henning HV; Langenbeck U
    Metabolism; 1983 Apr; 32(4):323-7. PubMed ID: 6353139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.