These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 6773259)
21. Multiple isoacceptor forms of several transfer ribonucleic acids in a mutant yeast strain. Bell JB; Jacobson KB; Shugart LR Can J Biochem; 1978 Jan; 56(1):51-9. PubMed ID: 378329 [TBL] [Abstract][Full Text] [Related]
22. [Characterization of fluorescent derivatives of tRNA Phe by experiments in the ribosomal system]. Bintermaĭer V; Tsakhau GG Mol Biol (Mosk); 1975; 9(1):63-9. PubMed ID: 768743 [TBL] [Abstract][Full Text] [Related]
23. Conformational changes of yeast tRNAPhe and E. coli tRNA2Glu as indicated by different nuclease digestion patterns. Wrede P; Wurst R; Vournakis J; Rich A J Biol Chem; 1979 Oct; 254(19):9608-16. PubMed ID: 114514 [TBL] [Abstract][Full Text] [Related]
24. Role of residue Glu152 in the discrimination between transfer RNAs by tyrosyl-tRNA synthetase from Bacillus stearothermophilus. Vidal-Cros A; Bedouelle H J Mol Biol; 1992 Feb; 223(3):801-10. PubMed ID: 1542120 [TBL] [Abstract][Full Text] [Related]
25. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Davanloo P; Sprinzl M; Cramer F Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644 [TBL] [Abstract][Full Text] [Related]
26. Properties of tRNA species modified in the 3'-terminal ribose moiety in an eukaryotic ribosomal system. Baksht E; de Groot N; Sprinzl M; Cramer F Biochemistry; 1976 Aug; 15(16):3639-46. PubMed ID: 782520 [TBL] [Abstract][Full Text] [Related]
27. Incorporation of 1,N6-ethenoadenosine into the 3' terminus of tRNA using T4 RNA ligase. 1. Preparation of yeast tRNAPhe derivatives. Paulsen H; Wintermeyer W Eur J Biochem; 1984 Jan; 138(1):117-23. PubMed ID: 6363066 [TBL] [Abstract][Full Text] [Related]
28. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs. Chinault AC; Tan KH; Hassur SM; Hecht SM Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826 [TBL] [Abstract][Full Text] [Related]
29. Transcription and processing of intervening sequences in yeast tRNA genes. Knapp G; Beckmann JS; Johnson PF; Fuhrman SA; Abelson J Cell; 1978 Jun; 14(2):221-36. PubMed ID: 352537 [TBL] [Abstract][Full Text] [Related]
30. Affinity labeling of Escherichia coli histidyl-tRNA synthetase with reactive ATP analogues. Identification of labeled amino acid residues by matrix assisted laser desorption-ionization mass spectrometry. Gillet S; Hoang CB; Schmitter JM; Fukui T; Blanquet S; Hountondji C Eur J Biochem; 1996 Oct; 241(1):133-41. PubMed ID: 8898898 [TBL] [Abstract][Full Text] [Related]
31. Detection of ligand-induced conformational changes in phenylalanyl-tRNA synthetase of Escherichia coli K10 by laser light scattering. Holler E; Wang CC; Ford NC Biochemistry; 1981 Feb; 20(4):861-7. PubMed ID: 7011376 [TBL] [Abstract][Full Text] [Related]
32. Interaction of elongation factor Tu from Escherichia coli with aminoacyl-tRNA carrying a fluorescent reporter group on the 3' terminus. Ott G; Faulhammer HG; Sprinzl M Eur J Biochem; 1989 Sep; 184(2):345-52. PubMed ID: 2676533 [TBL] [Abstract][Full Text] [Related]
33. Ribosome binding by tRNAs with fluorescent labeled 3' termini. Wells BD; Cantor CR Nucleic Acids Res; 1980 Jul; 8(14):3229-46. PubMed ID: 6160468 [TBL] [Abstract][Full Text] [Related]
35. Specific substitution into the anticodon loop of yeast tyrosine transfer RNA. Bare LA; Uhlenbeck OC Biochemistry; 1986 Sep; 25(19):5825-30. PubMed ID: 3535890 [TBL] [Abstract][Full Text] [Related]
36. Replacement of wybutine by hydrazines and its effect on the active conformation of yeast tRNAPhe. Schleich HG; Wintermeyer W; Zachau HG Nucleic Acids Res; 1978 May; 5(5):1701-13. PubMed ID: 351568 [TBL] [Abstract][Full Text] [Related]
37. Photoreaction of 8-methoxypsoralen with yeast-tRNAPhe. Identification of the major reaction sites. Nielsen PE; Leick V Eur J Biochem; 1985 Nov; 152(3):619-23. PubMed ID: 3932070 [TBL] [Abstract][Full Text] [Related]
38. Conformational activation of the yeast phenylalanyl-tRNA synthetase catalytic site induced by tRNAPhe interaction: triggering of adenosine or CpCpA trinucleoside diphosphate aminoacylation upon binding of tRNAPhe lacking these residues. Renaud M; Bacha H; Remy P; Ebel JP Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1606-8. PubMed ID: 7015339 [TBL] [Abstract][Full Text] [Related]
39. [Reactivity of the 3'-terminal oligonucleotide Sequence C-A-C-C-A of tRNAPhe and tRNAVal from baker's yeast upon N-oxidation with monoperphthalic acid as compared to the oligonucleotides C-A-C-C-A and A-A-A-U-C-A-C-C-A (author's transl)]. Solfert R; von der Haar F; Sternbach H; Sprinzl M; Cramer F Hoppe Seylers Z Physiol Chem; 1975 Nov; 356(11):1811-9. PubMed ID: 1107201 [TBL] [Abstract][Full Text] [Related]
40. Fast kinetic study of yeast phenylalanyl-tRNA synthetase: role of tRNAPhe in the discrimination between tyrosine and phenylalanine. Lin SX; Baltzinger M; Remy P Biochemistry; 1984 Aug; 23(18):4109-16. PubMed ID: 6386044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]