These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 6773541)
21. The in vivo effects of acenocoumarol, phenprocoumon and warfarin on vitamin K epoxide reductase and vitamin K-dependent carboxylase in various tissues of the rat. de Boer-van den Berg MA; Thijssen HH; Vermeer C Biochim Biophys Acta; 1986 Oct; 884(1):150-7. PubMed ID: 3490277 [TBL] [Abstract][Full Text] [Related]
22. Vitamin K metabolism and vitamin K1 status in human liver samples: a search for inter-individual differences in warfarin sensitivity. Thijssen HH; Drittij-Reijnders MJ Br J Haematol; 1993 Aug; 84(4):681-5. PubMed ID: 8217828 [TBL] [Abstract][Full Text] [Related]
23. R- and S-Warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat. Fasco MJ; Principe LM J Biol Chem; 1982 May; 257(9):4894-901. PubMed ID: 7068669 [TBL] [Abstract][Full Text] [Related]
24. Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system. Wallin R; Sane DC; Hutson SM Thromb Res; 2002 Nov; 108(4):221-6. PubMed ID: 12617985 [TBL] [Abstract][Full Text] [Related]
25. Natural prenylquinones inhibit the enzymes of the vitamin K cycle in vitro. Ronden JE; Soute BA; Thijssen HH; Saupe J; Vermeer C Biochim Biophys Acta; 1996 Nov; 1298(1):87-94. PubMed ID: 8948492 [TBL] [Abstract][Full Text] [Related]
26. The function and metabolism of vitamin K. Olson RE Annu Rev Nutr; 1984; 4():281-337. PubMed ID: 6380538 [TBL] [Abstract][Full Text] [Related]
27. A comparison between vitamin K-dependent carboxylase from normal and warfarin-treated cows. Vermeer C; Soute BA; De Metz M; Hemker HC Biochim Biophys Acta; 1982 Feb; 714(2):361-5. PubMed ID: 6799008 [TBL] [Abstract][Full Text] [Related]
28. Warfarin poisoning and vitamin K antagonism in rat and human liver. Design of a system in vitro that mimics the situation in vivo. Wallin R; Martin LF Biochem J; 1987 Jan; 241(2):389-96. PubMed ID: 3593198 [TBL] [Abstract][Full Text] [Related]
29. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain. Caspers M; Czogalla KJ; Liphardt K; Müller J; Westhofen P; Watzka M; Oldenburg J Thromb Res; 2015 May; 135(5):977-83. PubMed ID: 25747820 [TBL] [Abstract][Full Text] [Related]
30. The metabolic functions and mechanism of action of vitamin K. Uotila L Scand J Clin Lab Invest Suppl; 1990; 201():109-17. PubMed ID: 2244179 [TBL] [Abstract][Full Text] [Related]
31. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. Cain D; Hutson SM; Wallin R J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981 [TBL] [Abstract][Full Text] [Related]
32. Solubilization and characterization of vitamin K epoxide reductase from normal and warfarin-resistant rat liver microsomes. Hildebrandt EF; Preusch PC; Patterson JL; Suttie JW Arch Biochem Biophys; 1984 Feb; 228(2):480-92. PubMed ID: 6696443 [TBL] [Abstract][Full Text] [Related]
33. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. Fasco MJ; Principe LM; Walsh WA; Friedman PA Biochemistry; 1983 Nov; 22(24):5655-60. PubMed ID: 6652076 [TBL] [Abstract][Full Text] [Related]
34. Profactor IX propeptide and glutamate substrate binding sites on the vitamin K-dependent carboxylase identified by site-directed mutagenesis. Sugiura I; Furie B; Walsh CT; Furie BC J Biol Chem; 1996 Jul; 271(30):17837-44. PubMed ID: 8663364 [TBL] [Abstract][Full Text] [Related]