These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 6773579)
1. Evidence for the importance of cysteine and arginine residues in Pseudomonas fluorescens UK-1 pantoate dehydrogenase. Myöhänen T; Mäntsälä P Biochim Biophys Acta; 1980 Aug; 614(2):266-73. PubMed ID: 6773579 [TBL] [Abstract][Full Text] [Related]
2. Effect of 2,4,6-trinitrobenzenesulfonic acid and pyridoxal 5'-phosphate on pantoate dehydrogenase from Pseudomonas fluorescens UK-1. Mäntsälä P Acta Chem Scand B; 1980; 34(5):385-6. PubMed ID: 6781185 [No Abstract] [Full Text] [Related]
3. Argininosuccinate synthetase: essential role of cysteine and arginine residues in relation to structure and mechanism of ATP activation. Kumar S; Lennane J; Ratner S Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6745-9. PubMed ID: 3863125 [TBL] [Abstract][Full Text] [Related]
4. Purification of pantoate and dimethylmalate dehydrogenase from Pseudomonas fluorescens UK-1. Mäntsälä P Biochim Biophys Acta; 1978 Sep; 526(1):25-33. PubMed ID: 99175 [TBL] [Abstract][Full Text] [Related]
5. Comparison of D-malate and beta, beta-dimethylmalate dehydrogenases from Pseudomonas fluorescens UK-1. Lähdesmäki M; Mäntsälä P Biochim Biophys Acta; 1980 Jun; 613(2):266-74. PubMed ID: 6778506 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue. Epperly BR; Dekker EE J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195 [TBL] [Abstract][Full Text] [Related]
7. Chemical modification of bacterial 4-aminobutyrate aminotransferase by phenylglyoxal. Tunnicliff G J Enzyme Inhib; 1995; 9(4):309-16. PubMed ID: 8598541 [TBL] [Abstract][Full Text] [Related]
8. Inhibition and covalent modification of rape seed (Brassica napus) enoyl ACP reductase by phenylglyoxal. Cottingham IR; Austin AJ; Slabas AR Biochim Biophys Acta; 1989 May; 995(3):273-8. PubMed ID: 2706276 [TBL] [Abstract][Full Text] [Related]
9. The presence of essential arginine residues at the NADPH-binding sites of beta-ketoacyl reductase and enoyl reductase domains of the multifunctional fatty acid synthetase of chicken liver. Vernon CM; Hsu RY Biochim Biophys Acta; 1984 Jul; 788(1):124-31. PubMed ID: 6378254 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase. Bohren KM; von Wartburg JP; Wermuth B Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957 [TBL] [Abstract][Full Text] [Related]
11. Protection of hexaprenyl-diphosphate synthase of Micrococcus luteus B-P 26 against inactivation by sulphydryl reagents and arginine-specific reagents. Yoshida I; Koyama T; Ogura K Biochim Biophys Acta; 1989 Apr; 995(2):138-43. PubMed ID: 2539196 [TBL] [Abstract][Full Text] [Related]
12. Probing the active site of Tritrichomonas foetus hypoxanthine-guanine-xanthine phosphoribosyltransferase using covalent modification of cysteine residues. Kanaani J; Somoza JR; Maltby D; Wang CC Eur J Biochem; 1996 Aug; 239(3):764-72. PubMed ID: 8774725 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of rabbit liver carbonyl reductase by phenylglyoxal and 2,3,4-trinitrobenzenesulfonate sodium. Imamura Y; Koga T; Shimada H; Otagiri M J Enzyme Inhib Med Chem; 2003 Feb; 18(1):35-9. PubMed ID: 12751818 [TBL] [Abstract][Full Text] [Related]
14. Evidence for a histidine and a cysteine residue in the substrate-binding site of yeast alcohol dehydrogenase. Leskovac V; Pavkov-Pericin D Biochem J; 1975 Mar; 145(3):581-90. PubMed ID: 168872 [TBL] [Abstract][Full Text] [Related]
15. Identification of the subunits and target peptides of pig heart NAD-specific isocitrate dehydrogenase modified by the affinity label 8-(4-bromo-2,3-dioxobutylthio)NAD. Huang YC; Kumar A; Colman RF Arch Biochem Biophys; 1997 Dec; 348(1):207-18. PubMed ID: 9390193 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of the condensing component of chicken liver fatty acid synthase by iodoacetamide and 5,5'-dithiobis-(2-nitrobenzoic acid). Varagiannis E; Kumar S Biochem J; 1983 Dec; 215(3):545-53. PubMed ID: 6661183 [TBL] [Abstract][Full Text] [Related]
17. Selective cysteine-->serine replacements in p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens allow the unambiguous assignment of Cys211 as the site of modification by spin-labeled p-chloromercuribenzoate. van der Bolt FJ; Drijfhout MC; Eppink MH; Hagen WR; van Berkel WJ Protein Eng; 1994 Jun; 7(6):801-4. PubMed ID: 7937711 [TBL] [Abstract][Full Text] [Related]
18. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal. Chollet R Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300 [TBL] [Abstract][Full Text] [Related]
19. Chemical modification of arginine and lysine residues in coenzyme-binding domain of carbonyl reductase from rabbit kidney: indomethacin affords a significant protection against inactivation of the enzyme by phenylglyoxal. Higuchi T; Imamura Y; Otagiri M Biochim Biophys Acta; 1994 Jan; 1199(1):81-6. PubMed ID: 8280759 [TBL] [Abstract][Full Text] [Related]
20. The sulfhydryl content of L-threonine dehydrogenase from Escherichia coli K-12: relation to catalytic activity and Mn2+ activation. Craig PA; Dekker EE Biochim Biophys Acta; 1990 Jan; 1037(1):30-8. PubMed ID: 2104757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]