These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 6773768)

  • 81. The identification of a structurally important cysteine residue in the glycerol dehydrogenase from Bacillus stearothermophilus.
    Spencer P; Scawen MD; Atkinson T; Gore MG
    Biochim Biophys Acta; 1991 Mar; 1073(2):386-93. PubMed ID: 2009285
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cloning and sequence analysis of the gene for phosphoenolpyruvate carboxylase from an extreme thermophile, Thermus sp.
    Nakamura T; Yoshioka I; Takahashi M; Toh H; Izui K
    J Biochem; 1995 Aug; 118(2):319-24. PubMed ID: 8543565
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Artificial and natural thermostabilization of subunit enzymes. Do they have similar mechanism?
    Trubetskoy VS; Torchilin VP
    Int J Biochem; 1985; 17(5):661-3. PubMed ID: 4029485
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Phosphate-binding sites in phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Michels S; Rogalska E; Branlant G
    Eur J Biochem; 1996 Feb; 235(3):641-7. PubMed ID: 8654412
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Coenzyme binding and co-operativity in D-glyceraldehyde 3-phosphate dehydrogenase.
    Biesecker G; Wonacott AJ
    Biochem Soc Trans; 1977; 5(3):647-52. PubMed ID: 198263
    [No Abstract]   [Full Text] [Related]  

  • 86. Superoxide dismutase from Thermus aquaticus. Isolation and characterisation of manganese and apo enzymes.
    Sato S; Harris JI
    Eur J Biochem; 1977 Mar; 73(2):373-81. PubMed ID: 14828
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The pyruvate dehydrogenase complex from thermophilic organisms: thermal stability and re-association from the enzyme components.
    Witzmann S; Bisswanger H
    Biochim Biophys Acta; 1998 Jun; 1385(2):341-52. PubMed ID: 9655930
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Purification and properties of NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from spinach leaves.
    Speranza ML; Gozzer C
    Biochim Biophys Acta; 1978 Jan; 522(1):32-42. PubMed ID: 202324
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Cloning of genes of the aminopeptidase T family from Thermus thermophilus HB8 and Bacillus stearothermophilus NCIB8924: apparent similarity to the leucyl aminopeptidase family.
    Motoshima H; Minagawa E; Tsukasaki F; Kaminogawa S
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1710-7. PubMed ID: 9362117
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Phosphorescence properties of Trp-84 and Trp-310 in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Gabellieri E; Strambini GB
    Biophys Chem; 1989 Jul; 33(3):257-64. PubMed ID: 2804244
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Triphosphopyridine nucleotide specific isocitrate dehydrogenase from Azotobacter vinelandii. Alkylation of a specific methionine residue and amino acid sequence of the peptide containing this residue.
    Edwards DJ; Heinrikson RL; Chung AE
    Biochemistry; 1974 Feb; 13(4):677-83. PubMed ID: 4149369
    [No Abstract]   [Full Text] [Related]  

  • 92. Gene cloning and sequence determination of leucine dehydrogenase from Bacillus stearothermophilus and structural comparison with other NAD(P)+-dependent dehydrogenases.
    Nagata S; Tanizawa K; Esaki N; Sakamoto Y; Ohshima T; Tanaka H; Soda K
    Biochemistry; 1988 Dec; 27(25):9056-62. PubMed ID: 3069133
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Site-directed mutagenesis of glyceraldehyde-3-phosphate dehydrogenase reveals the role of residue Ser148.
    Corbier C; Branlant C; Wonacott A; Branlant G
    Protein Eng; 1989 May; 2(7):559-62. PubMed ID: 2501780
    [TBL] [Abstract][Full Text] [Related]  

  • 94. D-Glyceraldehyde-3-phosphate dehydrogenase: structural basis and functional role of the acyl transfer reactions.
    Nagradova NK; Schmalhausen EV
    Biochemistry (Mosc); 1998 May; 63(5):504-15. PubMed ID: 9632884
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Identification of the arylazido-beta-alanyl-NAD+-modified site in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by microsequencing and fast atom bombardment mass spectrometry.
    Chen S; Lee TD; Legesse K; Shively JE
    Biochemistry; 1986 Sep; 25(19):5391-5. PubMed ID: 3778866
    [TBL] [Abstract][Full Text] [Related]  

  • 96. An enhanced thermostability in thermophilic 5-S ribonucleic acids under physiological salt conditions.
    Nazar RN; Sprott GD; Matheson AT; Van NT
    Biochim Biophys Acta; 1978 Nov; 521(1):288-94. PubMed ID: 363159
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Studies on the subunit structure of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Amelunxen RE; Noelken M; Singleton R
    Arch Biochem Biophys; 1970 Dec; 141(2):447-55. PubMed ID: 5497141
    [No Abstract]   [Full Text] [Related]  

  • 98. Tentative amino acid sequence of hog pepsin.
    Morávek L; Kostka V
    FEBS Lett; 1973 Sep; 35(2):276-8. PubMed ID: 4582944
    [No Abstract]   [Full Text] [Related]  

  • 99. Primary structure of streptococcal proteinase. III. Isolation of cyanogen bromide peptides: complete covalent structure of the polypeptide chain.
    Tai JY; Kortt AA; Liu TY; Elliott SD
    J Biol Chem; 1976 Apr; 251(7):1955-9. PubMed ID: 1270417
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Thermal properties of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli.
    Fontana A; Grandi C; Boccu E; Veronese FM
    Experientia Suppl; 1976; 26():135-45. PubMed ID: 780122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.