These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6773813)

  • 1. Control of intracellular calcium in presynaptic nerve terminals.
    Blaustein MP; Ratzlaff RW; Schweitzer ES
    Fed Proc; 1980 Aug; 39(10):2790-5. PubMed ID: 6773813
    [No Abstract]   [Full Text] [Related]  

  • 2. Probing for calcium at presynaptic nerve terminals.
    McGraw CF; Somlyo AV; Blaustein MP
    Fed Proc; 1980 Aug; 39(10):2796-801. PubMed ID: 7409205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium buffering in presynaptic nerve terminals. Free calcium levels measured with arsenazo III.
    Schweitzer ES; Blaustein MP
    Biochim Biophys Acta; 1980 Aug; 600(3):912-21. PubMed ID: 6773574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP depletion increases Ca2+ uptake by synaptosomes.
    Akerman KE; Nicholls DG
    FEBS Lett; 1981 Nov; 135(1):212-4. PubMed ID: 7319036
    [No Abstract]   [Full Text] [Related]  

  • 5. Pyruvate utilization by synaptosomes is independent of calcium.
    Kauppinen RA; Nicholls DG
    FEBS Lett; 1986 Apr; 199(2):222-6. PubMed ID: 3084295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals.
    Sanchez-Armass S; Blaustein MP
    Am J Physiol; 1987 Jun; 252(6 Pt 1):C595-603. PubMed ID: 3109248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-dependent calcium storage in presynaptic nerve terminals.
    Kendrick NC; Blaustein MP; Fried RC; Ratzlaff RW
    Nature; 1977 Jan; 265(5591):246-8. PubMed ID: 319366
    [No Abstract]   [Full Text] [Related]  

  • 8. Stimulation by calcium of glucose uptake and lactate production in pigeon erythrocytes.
    Lucas M
    Biomed Biochim Acta; 1987; 46(2-3):S253-7. PubMed ID: 3109406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux.
    Pozzan T; Bragadin M; Azzone GF
    Biochemistry; 1977 Dec; 16(25):5618-25. PubMed ID: 21688
    [No Abstract]   [Full Text] [Related]  

  • 10. How is the cytoplasmic calcium concentration controlled in nerve terminals?
    Blaustein MP; McGraw CF; Somlyo AV; Schweitzer ES
    J Physiol (Paris); 1980 Sep; 76(5):459-70. PubMed ID: 6778992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of Na(+)-Ca2+ exchange and of mitochondria in the regulation of presynaptic Ca2+ and spontaneous glutamate release.
    Scotti AL; Chatton JY; Reuter H
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):357-64. PubMed ID: 10212484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of intracellular Ca2+-stores in rat duodenal epithelium.
    van Corven EJ; Timmermans JA; Mircheff AK; van Os CH
    Prog Clin Biol Res; 1988; 252():127-32. PubMed ID: 2964644
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of the intracellular Ca(2+) pools involved in the calcium homeostasis in Herpetomonas sp. promastigotes.
    Sodré CL; Moreira BL; Nobrega FB; Gadelha FR; Meyer-Fernandes JR; Dutra PM; Vercesi AE; Lopes AH; Scofano HM; Barrabin H
    Arch Biochem Biophys; 2000 Aug; 380(1):85-91. PubMed ID: 10900136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure to maintain glycolysis in anoxic nerve terminals.
    Kauppinen RA; Nicholls DG
    J Neurochem; 1986 Dec; 47(6):1864-9. PubMed ID: 3095495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depolarization of in situ mitochondria by hydrogen peroxide in nerve terminals.
    Chinopoulos C; Adam-Vizi V
    Ann N Y Acad Sci; 1999; 893():269-72. PubMed ID: 10672246
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of intracellular calcium in squid axons.
    Brinley FJ
    Fed Proc; 1980 Aug; 39(10):2778-82. PubMed ID: 6157570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of the hypoosmosis-induced calcium response in isolated nerve terminals of rat brain.
    Levko AV; Rakovich AA; Samoilenko SG; Konev SV
    Med Sci Monit; 2003 Apr; 9(4):BR115-24. PubMed ID: 12709662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Extramitochondrial Ca2+ controls the activity of the Ca2+-transporting system in mitochondria].
    Leĭkin IuN; Gonsalves MP
    Dokl Akad Nauk SSSR; 1986; 290(4):1011-4. PubMed ID: 3096680
    [No Abstract]   [Full Text] [Related]  

  • 19. Bioenergetic response of isolated nerve terminals of rat brain to osmotic swelling.
    Levko AV; Rakovich AA; Konev SV
    Biochemistry (Mosc); 2000 Feb; 65(2):223-9. PubMed ID: 10713552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of citrinin-induced dysfunction of mitochondria. IV--Effect on Ca2+ transport.
    Chagas GM; Oliveira MA; Campello AP; Kluppel ML
    Cell Biochem Funct; 1995 Mar; 13(1):53-9. PubMed ID: 7720190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.