BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6774599)

  • 1. Adaptive differentiation of lymphocytes: theoretical implications for mechanisms of cell--cell recognition and regulation of immune responses.
    Katz DH
    Adv Immunol; 1980; 29():137-207. PubMed ID: 6774599
    [No Abstract]   [Full Text] [Related]  

  • 2. Adaptive differentiation of murine lymphocytes: implications for mechanisms of cell--cell recognition and the regulation of immune responses.
    Katz DH
    Fed Proc; 1979 Jun; 38(7):2065-70. PubMed ID: 109320
    [No Abstract]   [Full Text] [Related]  

  • 3. The influence of thymus on the development of MHC restrictions exhibited by T-helper cells.
    Waldmann H; Pope H; Beetles C; Davies AJ
    Nature; 1979 Jan; 277(5692):137-8. PubMed ID: 310521
    [No Abstract]   [Full Text] [Related]  

  • 4. MHC restriction of murine T lymphocyte reactivity analysed by growth of bone marrow cells in vitro on thymus epithelial monolayers.
    Gorczynski RM; Khomasurya B; Macrae S
    Immunology; 1979 Dec; 38(4):835-46. PubMed ID: 391705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of disease susceptibility to major histocompatibility antigens.
    Zinkernagel RM
    Transplant Proc; 1979 Mar; 11(1):624-7. PubMed ID: 109969
    [No Abstract]   [Full Text] [Related]  

  • 6. T-cell specificity for H-2 and Ir gene phenotype correlates with the phenotype of thymic antigen-presenting cells.
    Longo DL; Schwartz RH
    Nature; 1980 Sep; 287(5777):44-6. PubMed ID: 6774265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self recognition in allogeneic radiation bone marrow chimeras. A radiation-resistant host element dictates the self specificity and immune response gene phenotype of T-helper cells.
    Singer A; Hathcock KS; Hodes RJ
    J Exp Med; 1981 May; 153(5):1286-301. PubMed ID: 6166716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the major histocompatibility gene complex in murine cytotoxic T cell responses.
    Wagner H; Pfizenmaier K; Röllinghoff M
    Adv Cancer Res; 1980; 31():77-124. PubMed ID: 6157313
    [No Abstract]   [Full Text] [Related]  

  • 9. Ia positive cells in the medulla of rat thymus are bone marrow derived.
    Barclay AN; Mayrhofer G
    Adv Exp Med Biol; 1982; 149():381-7. PubMed ID: 6816023
    [No Abstract]   [Full Text] [Related]  

  • 10. The major influence on helper T cell cooperative partner cell preferences is exerted by the extrathymic environment.
    Katz DH; Katz LR; Bogowitz CA; Bargatze RF
    J Immunol; 1980 Apr; 124(4):1750-7. PubMed ID: 6965961
    [No Abstract]   [Full Text] [Related]  

  • 11. Early appearance of donor-type antigen-presenting cells in the thymuses of 1200 R radiation-induced bone marrow chimeras correlates with self-recognition of donor I region gene products.
    Longo DL; Davis ML
    J Immunol; 1983 Jun; 130(6):2525-7. PubMed ID: 6406592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency analysis of cytotoxic T lymphocyte precursors in chimeric mice. Evidence for intrathymic maturation of clonally distinct self-major histocompatibility complex- and allo-major histocompatiblilty complex-restricted virus-specific T cells.
    Wagner H; Hardt C; Bartlett R; Stockinger H; Röllinghoff M; Rodt H; Pfizenmaier K
    J Exp Med; 1981 Jun; 153(6):1517-32. PubMed ID: 6265587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxic T lymphocyte responses by chimeric thymocytes. Self-recognition is determined early in T cell development.
    Kruisbeek AM; Hodes RJ; Singer A
    J Exp Med; 1981 Jan; 153(1):13-29. PubMed ID: 6969780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between lymphocytes in immune responses.
    Miller JF; Basten A; Sprent J; Cheers C
    Cell Immunol; 1971 Oct; 2(5):469-95. PubMed ID: 4399419
    [No Abstract]   [Full Text] [Related]  

  • 15. Homologies between cell interaction molecules controlled by major histocompatibility complex- and Igh-V-linked genes that T cells use for communication; both molecules undergo "adaptive" differentiation in the thymus.
    Yamauchi K; Flood PM; Singer A; Gershon RK
    Eur J Immunol; 1983 Apr; 13(4):285-91. PubMed ID: 6343093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance and biological function of class II MHC molecules. Rous-Whipple Award lecture 1985.
    Benacerraf B
    Am J Pathol; 1985 Sep; 120(3):334-43. PubMed ID: 3929612
    [No Abstract]   [Full Text] [Related]  

  • 17. Thymus dictates major histocompatibility complex (MHC) specificity and immune response gene phenotype of class II MHC-restricted T cells but not of class I MHC-restricted T cells.
    Kast WM; de Waal LP; Melief CJ
    J Exp Med; 1984 Dec; 160(6):1752-66. PubMed ID: 6096476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T cell function in bone marrow chimeras: absence of host-reactive T cells and cooperation of helper T cells across allogeneic barriers.
    von Boehmer H; Sprent J
    Transplant Rev; 1976; 29():3-23. PubMed ID: 58461
    [No Abstract]   [Full Text] [Related]  

  • 19. Review: cellular immune responses to intracellular parasites: role of the major histocompatibility gene complex and thymus in determining immune responsiveness and susceptibility to disease.
    Zinkernagel RM
    Parasite Immunol; 1979; 1(2):91-109. PubMed ID: 121771
    [No Abstract]   [Full Text] [Related]  

  • 20. [Regulation of immune system functions].
    Petrov RV
    Arkh Patol; 1983; 45(4):3-11. PubMed ID: 6191742
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.