These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 6776094)

  • 1. Galactose transport systems in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J; Saier MH
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.
    Thompson J
    J Bacteriol; 1979 Dec; 140(3):774-85. PubMed ID: 118155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis.
    Park YH; McKay LL
    J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes.
    Reizer J; Saier MH
    J Bacteriol; 1983 Oct; 156(1):236-42. PubMed ID: 6413489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.
    Thompson J; Thomas TD
    J Bacteriol; 1977 May; 130(2):583-95. PubMed ID: 122509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1204-14. PubMed ID: 6406427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar transport by the bacterial phosphotransferase system. Regulation of other transport systems (lactose and melibiose).
    Mitchell WJ; Misko TP; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14553-64. PubMed ID: 6815195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose.
    Thompson J; Chassy BM
    J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of sugar uptake via the phosphoenolpyruvate-dependent phosphotransferase systems in Bacillus subtilis and Lactococcus lactis is mediated by ATP-dependent phosphorylation of seryl residue 46 in HPr.
    Ye JJ; Saier MH
    J Bacteriol; 1996 Jun; 178(12):3557-63. PubMed ID: 8655554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J; Turner KW; Thomas TD
    J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ; Crow VL; Lee LN; Garon CF
    J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and energy requirements of an alpha-aminoisobutyric acid transport system in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1976 Aug; 127(2):719-30. PubMed ID: 8422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity.
    Hamilton IR; St Martin EJ
    Infect Immun; 1982 May; 36(2):567-75. PubMed ID: 6282753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous uptake of galactose and glucose by Azotobacter vinelandii.
    Wong TY; Murdock CA; Concannon SP; Lockey TD
    Biochem Cell Biol; 1991; 69(10-11):711-4. PubMed ID: 1799437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium.
    Saier MH; Novotny MJ; Comeau-Fuhrman D; Osumi T; Desai JD
    J Bacteriol; 1983 Sep; 155(3):1351-7. PubMed ID: 6350268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease.
    Osumi T; Saier MH
    Proc Natl Acad Sci U S A; 1982 Mar; 79(5):1457-61. PubMed ID: 7041121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.