These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6776096)

  • 1. Differences in the architecture of cytoplasmic and intracytoplasmic membranes of three chemotrophically and phototrophically grown species of the Rhodospirillaceae.
    Golecki JR; Oelze J
    J Bacteriol; 1980 Nov; 144(2):781-8. PubMed ID: 6776096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The size and number of intramembrane particles in cells of the photosynthetic bacterium Rhodopseudomonas capsulata studied by freeze-fracture electron microscopy.
    Golecki J; Drews G; Bühler R
    Cytobiologie; 1979 Feb; 18(3):381-9. PubMed ID: 428618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of intracytoplasmic membranes in chemotrophic mecillinam sphaeroplasts of Rhodospirillum rubrum.
    Golecki JR; Arnheim K; Oelze J
    Eur J Cell Biol; 1980 Apr; 21(1):48-52. PubMed ID: 6769673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison, by freeze-fracture electron microscopy, of chromatophores, spheroplast-derived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides.
    Lommen MA; Takemoto J
    J Bacteriol; 1978 Nov; 136(2):730-41. PubMed ID: 309467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membranes of Rhodopseudomonas sphaeroides. V. Identification of bacteriochlorophyll alpha-depleted cytoplasmic membrane in phototrophically grown cells.
    Parks LC; Niederman RA
    Biochim Biophys Acta; 1978 Jul; 511(1):70-82. PubMed ID: 307404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocytochemical ultrastructural analysis of chromatophore membrane formation in Rhodospirillum rubrum.
    Crook SM; Treml SB; Collins ML
    J Bacteriol; 1986 Jul; 167(1):89-95. PubMed ID: 3087967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-cycle-specific biosynthesis of the photosynthetic membrane of Rhodopseudomonas sphaeroides. Structural implications.
    Yen GS; Cain BD; Kaplan S
    Biochim Biophys Acta; 1984 Oct; 777(1):41-55. PubMed ID: 6333251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of respiratory reactions in Rhodospirillum rubrum: inhibition studies with 2-hydroxydiphenyl.
    Oelze J; Kamen MD
    Biochim Biophys Acta; 1975 Apr; 387(1):1-11. PubMed ID: 164937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the H protein in assembly of the photochemical reaction center and intracytoplasmic membrane in Rhodospirillum rubrum.
    Cheng YS; Brantner CA; Tsapin A; Collins ML
    J Bacteriol; 2000 Mar; 182(5):1200-7. PubMed ID: 10671438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-fracture study of the zymogen granule membrane of pancreas: two novel types of intramembrane particles.
    Cabana C; Magny P; Nadeau D; Grondin G; Beaudoin A
    Eur J Cell Biol; 1988 Feb; 45(2):246-55. PubMed ID: 3366124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Fermentation of pyruvate by 7 species of phototrophic purple bacteria].
    Gürgün V; Kirchner G; Pfennig N
    Z Allg Mikrobiol; 1976; 16(8):573-86. PubMed ID: 12621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Succinate dehydrogenase in Rhodopseudomonas sphaeroides: subunit composition and immunocross-reactivity with other related bacteria.
    Barassi CA; Kranz RG; Gennis RB
    J Bacteriol; 1985 Aug; 163(2):778-82. PubMed ID: 3874866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of cytochrome b+50 in membranes of Rhodospirillum rubrum isolated from aerobically and phototrophically grown cells.
    Niederman RA; Hunter CN; Mallon DE; Jones OT
    Biochem J; 1980 Feb; 186(2):453-9. PubMed ID: 6769433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial differentiation in photosynthetic and non-photosynthetic membranes of Rhodopseudomonas palustris.
    Varga AR; Staehelin LA
    J Bacteriol; 1983 Jun; 154(3):1414-30. PubMed ID: 6343353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides.
    Woronowicz K; Harrold JW; Kay JM; Niederman RA
    J Mol Microbiol Biotechnol; 2013; 23(1-2):48-62. PubMed ID: 23615195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pH, O2, and temperature on the absorption properties of the secondary light-harvesting antenna in members of the family Rhodospirillaceae.
    Uffen RL
    J Bacteriol; 1985 Sep; 163(3):943-50. PubMed ID: 3928601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata.
    McEwan AG; Greenfield AJ; Wetzstein HG; Jackson JB; Ferguson SJ
    J Bacteriol; 1985 Nov; 164(2):823-30. PubMed ID: 2997133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane modifications in chick osteoclasts revealed by freeze-fracture replicas.
    Akisaka T; Yoshida H; Kogaya Y; Kim S; Yamamoto M; Kataoka K
    Am J Anat; 1990 Aug; 188(4):381-92. PubMed ID: 2392994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early formation of intracytoplasmic membranes in Rhodospillum rubrum.
    Oelze J
    Biochim Biophys Acta; 1976 Jun; 436(1):95-100. PubMed ID: 819036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of two cell-envelope fractions from chemotrophically grown Rhodospirillum rubrum.
    Oelze J; Golecki JR; Kleinig H; Weckesser J
    Antonie Van Leeuwenhoek; 1975; 41(3):273-86. PubMed ID: 813575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.