These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6776131)

  • 1. Osmotic properties of differentiating bone marrow precursor cells: membrane permeability to non-electrolytes.
    Cicoria AD; Hempling HG
    J Cell Physiol; 1980 Oct; 105(1):129-36. PubMed ID: 6776131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotic properties of a proliferating and differentiating line of cells from the bone marrow of the rat.
    Cicoria AD; Hempling HG
    J Cell Physiol; 1980 Oct; 105(1):105-27. PubMed ID: 7430262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State of water and electrolytes in mammalian cells during maturation and differentiation.
    Hempling HG; Cicoria AD; Dupre AM; Thompson S
    J Exp Zool; 1981 Mar; 215(3):259-76. PubMed ID: 7288380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation of membrane function: the permeability of the rat erythroblastic leukemic cell to water and to non-electrolytes.
    Hempling HG; Wise WC
    J Cell Physiol; 1975 Apr; 85(2 Pt 1):195-207. PubMed ID: 1054696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for differentiating nonunique estimates of membrane transport properties: mature mouse oocytes exposed to glycerol.
    Paynter SJ; McGrath JJ; Fuller BJ; Shaw RW
    Cryobiology; 1999 Nov; 39(3):205-14. PubMed ID: 10600254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation.
    Liu J; Zieger MA; Lakey JR; Woods EJ; Critser JK
    Cryobiology; 1997 Aug; 35(1):1-13. PubMed ID: 9245505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of transport parameters values on volume flows in the double-membrane system].
    Slezak A; Bryll A
    Polim Med; 2005; 35(1):21-37. PubMed ID: 16050074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing Kedem-Katchalsky equations of the transmembrane transport for binary nonhomogeneous non-electrolyte solutions.
    Slezak A; Jarzyńska M
    Polim Med; 2005; 35(1):15-20. PubMed ID: 16050073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotic, diffusive and convective volume and solute flows of ionic solutions through a horizontally mounted polymeric membrane.
    Jasik-Slezak J; Grzegorczyn S; Slezak A
    Polim Med; 2007; 37(3):31-46. PubMed ID: 18251203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeability characteristics of vascular smooth muscle cells as revealed by their osmotic responses to non-electrolytes.
    Johansson B
    Acta Physiol Scand; 1969 Nov; 77(3):282-97. PubMed ID: 5372260
    [No Abstract]   [Full Text] [Related]  

  • 11. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gestational development of water and non-electrolyte permeability of human syncytiotrophoblast plasma membranes.
    Jansson T; Powell TL; Illsley NP
    Placenta; 1999; 20(2-3):155-60. PubMed ID: 10195735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism.
    Kleinhans FW
    Cryobiology; 1998 Dec; 37(4):271-89. PubMed ID: 9917344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water.
    Devireddy RV
    Mol Reprod Dev; 2005 Mar; 70(3):333-43. PubMed ID: 15625698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions 7. Evaluation of Sij Peusner's coefficients for polymeric membrane].
    Batko KM; Ślęzak-Prochazka I; Ślęzak A
    Polim Med; 2014; 44(1):39-49. PubMed ID: 24918655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 4. Evaluation of Wij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):241-56. PubMed ID: 24596040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 2. Evaluation of Lij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):103-9. PubMed ID: 24044290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Permeability of the E. coli cell membrane for thiourea, dimethylsulfoxide and glycerol].
    Efimov VB; Sharonov BP
    Biofizika; 1985; 30(3):446-9. PubMed ID: 3927989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 3. Evaluation of Hij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):111-8. PubMed ID: 24044291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Kedem-Katchalsky model equations of the volume flux of homogeneous non-electrolyte solutions in double-membrane system.
    Slezak A; Bryll A
    Polim Med; 2004; 34(4):45-52. PubMed ID: 15850297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.