These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6776177)

  • 21. Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate.
    Sias SR; Ingraham JL
    Arch Microbiol; 1979 Sep; 122(3):263-70. PubMed ID: 120727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1.
    Sharma V; Noriega CE; Rowe JJ
    Appl Environ Microbiol; 2006 Jan; 72(1):695-701. PubMed ID: 16391109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Oxidation by nitrite of azurin and cytochrome c-551 from Pseudomonas aeruginosa].
    Kamalian MG; Karapetian AV; Nalbandian RM
    Biokhimiia; 1987 Apr; 52(4):638-42. PubMed ID: 3036256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of mutant Pseudomonas aeruginosa strains unable to assimilate nitrate.
    Jeter RM; Ingraham JL
    Arch Microbiol; 1984 Jun; 138(2):124-30. PubMed ID: 6433849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics and Mechanism of Fenpropathrin Biodegradation by a Newly Isolated Pseudomonas aeruginosa sp. Strain JQ-41.
    Song H; Zhou Z; Liu Y; Deng S; Xu H
    Curr Microbiol; 2015 Sep; 71(3):326-32. PubMed ID: 26068594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the systemic fungicide carboxin on electron transport function in membranes of Micrococcus denitrificans.
    Tucker AN; Lillich TT
    Antimicrob Agents Chemother; 1974 Nov; 6(5):572-8. PubMed ID: 15825307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel].
    Liu WC; Wu BB; Li XS; Lu DN; Liu YM
    Huan Jing Ke Xue; 2015 Feb; 36(2):712-8. PubMed ID: 26031103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Strain of Pseudomonas aeruginosa--producer of bioPAV].
    Turkovskaia OV; Dmitrieva TV; Muratova AIu
    Prikl Biokhim Mikrobiol; 2001; 37(1):80-5. PubMed ID: 11234411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Microbial breakdown of acid anilide fungicides (author's transl)].
    Bachofer R
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):153-6. PubMed ID: 998043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil.
    Xu J; Liu H; Liu J; Liang R
    Wei Sheng Wu Xue Bao; 2015 Jun; 55(6):755-63. PubMed ID: 26563001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment.
    Chien CC; Kao CM; Chen DY; Chen SC; Chen CC
    Environ Toxicol Chem; 2014 May; 33(5):1059-63. PubMed ID: 24549634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation of a Pseudomonas aeruginosa strain from soil that can degrade polyurethane diol.
    Mukherjee K; Tribedi P; Chowdhury A; Ray T; Joardar A; Giri S; Sil AK
    Biodegradation; 2011 Apr; 22(2):377-88. PubMed ID: 20803164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversity of oxygen and N-oxide regulation of nitrite reductases in denitrifying bacteria.
    Ka JO; Urbance J; Ye RW; Ahn TY; Tiedje JM
    FEMS Microbiol Lett; 1997 Nov; 156(1):55-60. PubMed ID: 9368361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa.
    Arshad M; Hussain S; Saleem M
    J Appl Microbiol; 2008 Feb; 104(2):364-70. PubMed ID: 17922824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of a peptidoglycolipid bioemulsifier by Pseudomonas aeruginosa grown on hydrocarbon.
    Ilori MO; Amund DI
    Z Naturforsch C J Biosci; 2001; 56(7-8):547-52. PubMed ID: 11531088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of a mutant of Pseudomonas aeruginosa affected in aerobic growth.
    van Hartingsveldt J; Stouthamer AH
    J Gen Microbiol; 1974 Aug; 83(2):303-10. PubMed ID: 4214894
    [No Abstract]   [Full Text] [Related]  

  • 37. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability.
    Das K; Mukherjee AK
    J Appl Microbiol; 2007 Jan; 102(1):195-203. PubMed ID: 17184335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite- and oxide-limited conditions.
    Koike I; Hattori A
    J Gen Microbiol; 1975 May; 88(1):11-9. PubMed ID: 1151328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane.
    Garnier PM; Auria R; Augur C; Revah S
    Appl Microbiol Biotechnol; 1999 Apr; 51(4):498-503. PubMed ID: 10341433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite.
    Hasegawa N; Arai H; Igarashi Y
    FEMS Microbiol Lett; 1998 Sep; 166(2):213-7. PubMed ID: 9770276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.