These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 6776260)

  • 1. Effect of calcium withdrawal on mechanical threshold in skeletal muscle fibres of the frog.
    Chiarandini DJ; Sanchez JA; Stefani E
    J Physiol; 1980 Jun; 303():153-63. PubMed ID: 6776260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibres of the frog.
    Kovács L; Szücs G
    J Physiol; 1983 Aug; 341():559-78. PubMed ID: 6604806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibres.
    Cota G; Stefani E
    J Physiol; 1981 Aug; 317():303-16. PubMed ID: 6975818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical activation in slow and twitch skeletal muscle fibres of the frog.
    Gilly WF; Hui CS
    J Physiol; 1980 Apr; 301():137-56. PubMed ID: 6967970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of calcium and other divalent cations on intracellular pH regulation of frog skeletal muscle.
    Putnam RW; Roos A
    J Physiol; 1986 Dec; 381():221-39. PubMed ID: 3114472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of caffeine on sodium transport, membrane potential, mechanical tension and ultrastructure in barnacle muscle fibres.
    Bittar EE; Hift H; Huddart H; Tong E
    J Physiol; 1974 Oct; 242(1):1-34. PubMed ID: 4373569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. External calcium and contractile activation during potassium contractures in twitch muscle fibres of the frog.
    Cota G; Stefani E
    Can J Physiol Pharmacol; 1982 Apr; 60(4):513-23. PubMed ID: 6980694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres.
    Fink R; Lüttgau HC
    J Physiol; 1976 Dec; 263(2):215-38. PubMed ID: 1087932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeine- and Ca2(+)-induced mechanical oscillations in isolated skeletal muscle fibres of the frog.
    Herrmann-Frank A
    J Muscle Res Cell Motil; 1989 Dec; 10(6):437-45. PubMed ID: 2613883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog.
    Lüttgau HC; Spiecker W
    J Physiol; 1979 Nov; 296():411-29. PubMed ID: 316821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres.
    Gomolla M; Gottschalk G; Lüttgau HC
    J Physiol; 1983 Oct; 343():197-214. PubMed ID: 6315919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contractions induced by sodium withdrawal in crab (Callinectes danae) muscle fibres.
    Madeira AC; Suarez-Kurtz G
    J Physiol; 1983 May; 338():339-53. PubMed ID: 6875961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of deuterium oxide on calcium transients and myofibrillar responses of frog skeletal muscle.
    Allen DG; Blinks JR; Godt RE
    J Physiol; 1984 Sep; 354():225-51. PubMed ID: 6090648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences and similarities in the noradrenaline- and caffeine-induced mechanical responses in the rabbit mesenteric artery.
    Itoh T; Kuriyama H; Suzuki H
    J Physiol; 1983 Apr; 337():609-29. PubMed ID: 6410057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane charge moved at contraction thresholds in skeletal muscle fibres.
    Horowicz P; Schneider MF
    J Physiol; 1981 May; 314():595-633. PubMed ID: 6975815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of calcium, barium and lanthanum on depolarization-contraction coupling in skeletal muscle fibres of Rana pipiens.
    Bolaños P; Caputo C; Velaz L
    J Physiol; 1986 Jan; 370():39-60. PubMed ID: 3485716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of 4-aminopyridine on the excitation-contraction coupling in frog and rat skeletal muscle.
    Khan AR; Edman KA
    Acta Physiol Scand; 1979 Apr; 105(4):443-52. PubMed ID: 313138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium transients studied under voltage-clamp control in frog twitch muscle fibres.
    Miledi R; Parker I; Zhu PH
    J Physiol; 1983 Jul; 340():649-80. PubMed ID: 6604154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of birefringence signals and calcium transients in voltage-clamped cut skeletal muscle fibres of the frog.
    Kovács L; Schümperli RA; Szücs G
    J Physiol; 1983 Aug; 341():579-93. PubMed ID: 6604807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sarcoplasmic reticulum (SR) calcium content on SR calcium release elicited by small voltage-clamp depolarizations in frog cut skeletal muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Carrier N
    J Gen Physiol; 1998 Aug; 112(2):161-79. PubMed ID: 9689025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.