These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 6777005)

  • 21. Studies on biochemical determinants of quinone-induced toxicity in primary murine bone marrow stromal cells.
    Twerdok LE; Trush MA
    Adv Exp Med Biol; 1991; 283():843-6. PubMed ID: 1906233
    [No Abstract]   [Full Text] [Related]  

  • 22. Effect of methoxy-p-benzoquinones and methoxy-p-hydroquinones on DNA synthesis in Ehrlich ascites tumor cells.
    Esterbauer H; Pölsler G; Fodor G
    Acta Biochim Biophys Hung; 1987; 22(2-3):195-204. PubMed ID: 3118625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of x-rays (18.5 keV) on aqueous solutions of benzoquinone and hydroquinone].
    CATHERINE ; VERMEIL ; SALOMON L
    C R Hebd Seances Acad Sci; 1959 Jul; 249(2):268-70. PubMed ID: 13671811
    [No Abstract]   [Full Text] [Related]  

  • 24. Cytochrome P450 destruction by benzene metabolites 1,4-benzoquinone and 1,4-hydroquinone and the formation of hydroxyl radicals in minipig liver microsomes.
    Kondrová E; Stopka P; Soucek P
    Toxicol In Vitro; 2007 Jun; 21(4):566-75. PubMed ID: 17187958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutathione conjugation as a mechanism of targeting latent quinones to the kidney.
    Lau SS; Monks TJ
    Adv Exp Med Biol; 1991; 283():457-64. PubMed ID: 1676871
    [No Abstract]   [Full Text] [Related]  

  • 26. Short-term toxicity tests on the mono and di methyl ethers of hydroquinone.
    HODGE HC; STERNER JH
    J Ind Hyg Toxicol; 1949 Mar; 31(2):79-92. PubMed ID: 18120016
    [No Abstract]   [Full Text] [Related]  

  • 27. Benzene and the genotoxicity of its metabolites. II. The effect of the route of administration on the micronuclei and bone marrow depression in mouse bone marrow cells.
    Ciranni R; Barale R; Ghelardini G; Loprieno N
    Mutat Res; 1988; 209(1-2):23-8. PubMed ID: 3173399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison.
    Lindsey RH; Bender RP; Osheroff N
    Chem Res Toxicol; 2005 Apr; 18(4):761-70. PubMed ID: 15833037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water relations of glucose-catabolizing enzymes in Pseudomonas fluorescens.
    Prior BA; Kenyon CP
    J Appl Bacteriol; 1980 Apr; 48(2):211-22. PubMed ID: 6257631
    [No Abstract]   [Full Text] [Related]  

  • 30. Metabolism and toxicity of 2-bromo-(diglutathion-S-yl)-hydroquinone and 2-bromo-3-(glutathion-S-yl)hydroquinone in the in situ perfused rat kidney.
    Rivera MI; Hinojosa LM; Hill BA; Lau SS; Monks TJ
    Drug Metab Dispos; 1994; 22(4):503-10. PubMed ID: 7956722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Examination of serum tyrosinase-DOPA oxidase with the aid of the hydroquinone-p-benzoquinone system in hepatic melansarcoma].
    Zălaru MC
    Med Interna (Bucur); 1966 Oct; 18(10):1245-9. PubMed ID: 5978452
    [No Abstract]   [Full Text] [Related]  

  • 32. Small structural changes on a hydroquinone scaffold determine the complex I inhibition or uncoupling of tumoral oxidative phosphorylation.
    Urra FA; Córdova-Delgado M; Lapier M; Orellana-Manzano A; Acevedo-Arévalo L; Pessoa-Mahana H; González-Vivanco JM; Martínez-Cifuentes M; Ramírez-Rodríguez O; Millas-Vargas JP; Weiss-López B; Pavani M; Ferreira J; Araya-Maturana R
    Toxicol Appl Pharmacol; 2016 Jan; 291():46-57. PubMed ID: 26712467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of anthraquinone, benzoquinone, hydroquinone and resorcinol on the hydrolysis of casein by papain.
    BAHADUR K; ATREYA BD
    Enzymologia; 1960 Jan; 21():238-44. PubMed ID: 13795781
    [No Abstract]   [Full Text] [Related]  

  • 34. The role of multivalent cations in the uptake and oxidation of glucose by Pseudomonas fluorescens.
    Walker CA; Durham NN
    Biochem J; 1973 Oct; 136(2):429-31. PubMed ID: 4204323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Mechanism of glucose oxydation by a strain of Pseudomonas fluorescens (type R). II. Influence of Fe3+ ions on glucose dehydrogenase activity].
    Wurtz B
    C R Seances Soc Biol Fil; 1973; 167(12):1960-64. PubMed ID: 4213924
    [No Abstract]   [Full Text] [Related]  

  • 36. Differences in the sensitivity of short-term bioassays.
    Trevors JT
    Bull Environ Contam Toxicol; 1982 Jun; 28(6):655-9. PubMed ID: 6809080
    [No Abstract]   [Full Text] [Related]  

  • 37. Deoxyguanosine adducts formed from benzoquinone and hydroquinone.
    Jowa L; Winkle S; Kalf G; Witz G; Snyder R
    Adv Exp Med Biol; 1986; 197():825-32. PubMed ID: 3766294
    [No Abstract]   [Full Text] [Related]  

  • 38. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical.
    Guillén F; Martínez MJ; Muñoz C; Martínez AT
    Arch Biochem Biophys; 1997 Mar; 339(1):190-9. PubMed ID: 9056249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The bioreduction of a series of benzoquinone ansamycins by NAD(P)H:quinone oxidoreductase 1 to more potent heat shock protein 90 inhibitors, the hydroquinone ansamycins.
    Guo W; Reigan P; Siegel D; Zirrolli J; Gustafson D; Ross D
    Mol Pharmacol; 2006 Oct; 70(4):1194-203. PubMed ID: 16825487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in quinone reductase activity in primary bone marrow stromal cells derived from C57BL/6 and DBA/2 mice.
    Twerdok LE; Trush MA
    Res Commun Chem Pathol Pharmacol; 1990 Mar; 67(3):375-86. PubMed ID: 2343185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.