These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 6777364)

  • 41. Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production.
    Masukawa H; Inoue K; Sakurai H; Wolk CP; Hausinger RP
    Appl Environ Microbiol; 2010 Oct; 76(20):6741-50. PubMed ID: 20709836
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxygen inactivation and recovery of nitrogenase activity in cyanobacteria.
    Pienkos PT; Bodmer S; Tabita FR
    J Bacteriol; 1983 Jan; 153(1):182-90. PubMed ID: 6401277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characteristics of nitrogenase activity in broken cell preparations of the blue-green alga Gloeocapsa sp. LB 795.
    Gallon JR; LaRue TA; Kurz WG
    Can J Microbiol; 1972 Mar; 18(3):327-32. PubMed ID: 4626914
    [No Abstract]   [Full Text] [Related]  

  • 44. Isolation and characterization of chlorate-resistant mutants of the blue-green alga Nosoc muscorum.
    Singh HN; Sonie KC
    Mutat Res; 1977 May; 43(2):205-12. PubMed ID: 405580
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo and in vitro kinetics of nitrogenase.
    Davis LC; Wang YL
    J Bacteriol; 1980 Mar; 141(3):1230-8. PubMed ID: 6988410
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Abscisic acid and its synthetic analog in relation to growth and nitrogenase activity of Azotobacter chroococcum and Nostoc muscorum.
    Marsálek B; Simek M
    Folia Microbiol (Praha); 1992; 37(2):159-60. PubMed ID: 1387101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased heterocyst frequency by patN disruption in Anabaena leads to enhanced photobiological hydrogen production at high light intensity and high cell density.
    Masukawa H; Sakurai H; Hausinger RP; Inoue K
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2177-2188. PubMed ID: 28064366
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrogenase of Klebsiella pneumoniae. Distinction between proton-reducing and acetylene-reducing forms of the enzyme: effect of temperature and component protein ratio on substrate-reduction kinetics.
    Thorneley RN; Eady RR
    Biochem J; 1977 Nov; 167(2):457-61. PubMed ID: 339912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrastructure of the cyanobacterium Nostoc muscorum and exploitation of the culture for hydrogen production.
    Shah V; Garg N; Madamwar D
    Folia Microbiol (Praha); 2003; 48(1):65-70. PubMed ID: 12744079
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diazotrophy under continuous light in a marine unicellular diazotrophic cyanobacterium, Gloeothece sp. 68DGA.
    Taniuchi Y; Yoshikawa S; Maeda SI; Omata T; Ohki K
    Microbiology (Reading); 2008 Jul; 154(Pt 7):1859-1865. PubMed ID: 18599815
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the role of oxygen for nitrogen fixation in the marine cyanobacterium Trichodesmium sp.
    Staal M; Rabouille S; Stal LJ
    Environ Microbiol; 2007 Mar; 9(3):727-36. PubMed ID: 17298372
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.
    Nyberg M; Heidorn T; Lindblad P
    J Biotechnol; 2015 Dec; 215():35-43. PubMed ID: 26325196
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane.
    Dilworth MJ; Eady RR; Eldridge ME
    Biochem J; 1988 Feb; 249(3):745-51. PubMed ID: 3162672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo effect to uncoupler CCCP on nitrogenase of Anabaena sp. CH1 and CH2.
    Chen PC; Shiu JL
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1984 Nov; 17(4):219-25. PubMed ID: 6442660
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biological dinitrogen fixation by selected soil cyanobacteria as affected by strain origin, morphotype, and light conditions.
    Hrčková K; Simek M; Hrouzek P; Lukešová A
    Folia Microbiol (Praha); 2010 Sep; 55(5):467-73. PubMed ID: 20941582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction between hydrogenase, nitrogenase, and respiratory activities in a Frankia isolate from Alnus rubra.
    Murry MA; Lopez MF
    Can J Microbiol; 1989 Jun; 35(6):636-41. PubMed ID: 2766117
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation of cyanobacterial heterocysts with high and sustained dinitrogen-fixation capacity supported by endogenous reductants.
    Jensen BB; Cox RP; Burris RH
    Arch Microbiol; 1986 Aug; 145(3):241-7. PubMed ID: 3094473
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differentiation of Rhizobium japonicum, III. Inhibition of nitrogenase derepression by chloramphenicol and rifampicin concentrations, not inhibiting growth.
    Werner D
    Z Naturforsch C Biosci; 1978; 33(11-12):859-62. PubMed ID: 154223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulatory properties of the nitrogenase from Rhodopseudomonas palustris.
    Zumft WG; Castillo F
    Arch Microbiol; 1978 Apr; 117(1):53-60. PubMed ID: 678011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.