These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6777373)

  • 21. Respiration-driven accumulation of C4 dicarboxylic acids by isolated membrane vesicles of Paracoccus denitrificans.
    Pik JR; Lawford HG
    Can J Biochem; 1979 May; 57(5):436-43. PubMed ID: 455122
    [No Abstract]   [Full Text] [Related]  

  • 22. Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans.
    Stouthamer AH
    J Bioenerg Biomembr; 1991 Apr; 23(2):163-85. PubMed ID: 2050653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between nitrite reduction and active phosphate uptake in the phosphate-accumulating denitrifier Pseudomonas sp. strain JR 12.
    Barak Y; van Rijn J
    Appl Environ Microbiol; 2000 Dec; 66(12):5236-40. PubMed ID: 11097896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separate binding sites for antimycin and mucidin in the respiratory chain of the bacterium Paracoccus denitrificans and their occurrence in other denitrificans bacteria.
    Kucera I; Hedbávný R; Dadák V
    Biochem J; 1988 Jun; 252(3):905-8. PubMed ID: 2844159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans.
    Albertsson I; Sjöholm J; Ter Beek J; Watmough NJ; Widengren J; Ädelroth P
    Sci Rep; 2019 Nov; 9(1):17234. PubMed ID: 31754148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Denitrifying Pseudomonas aeruginosa: some parameters of growth and active transport.
    Williams DR; Rowe JJ; Romero P; Eagon RG
    Appl Environ Microbiol; 1978 Aug; 36(2):257-63. PubMed ID: 100056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The pathway of nitrogen and reductive enzymes of denitrification.
    Hollocher TC
    Antonie Van Leeuwenhoek; 1982; 48(6):531-44. PubMed ID: 6820251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The production and utilization of nitric oxide by a new, denitrifying strain of Pseudomonas aeruginosa.
    Vosswinkel R; Neidt I; Bothe H
    Arch Microbiol; 1991; 156(1):62-9. PubMed ID: 1772347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans.
    Steenkamp DJ; Peck HD
    J Biol Chem; 1981 Jun; 256(11):5450-8. PubMed ID: 7016854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of action of agents which uncouple oxidative phosphorylation: direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria.
    Cunarro J; Weiner MW
    Biochim Biophys Acta; 1975 May; 387(2):234-40. PubMed ID: 1125290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formate dependent nitrate and nitrite reduction to ammonia by Citrobacter freundii and competition with denitrifying bacteria.
    Rehr B; Klemme JH
    Antonie Van Leeuwenhoek; 1989 Nov; 56(4):311-21. PubMed ID: 2619287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron transport-linked proton translocation at nitrite reduction in Campylobacter sputorum subspecies bubulus.
    de Vries W; Niekus HG; van Berchum H; Stouthamer AH
    Arch Microbiol; 1982 Mar; 131(2):132-9. PubMed ID: 6280634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions.
    Chayabutra C; Ju LK
    Appl Environ Microbiol; 2000 Feb; 66(2):493-8. PubMed ID: 10653709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterotrophic nitrification among denitrifiers.
    Castignetti D; Hollocher TC
    Appl Environ Microbiol; 1984 Apr; 47(4):620-3. PubMed ID: 6721486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton translocation coupled to ubiquinol oxidation in Paracoccus denitrificans.
    Lawford HG
    Can J Biochem; 1979 Feb; 57(2):172-7. PubMed ID: 36972
    [No Abstract]   [Full Text] [Related]  

  • 37. Estimation with an ion-selective electrode of the membrane potential in cells of Paracoccus denitrificans from the uptake of the butyltriphenylphosphonium cation during aerobic and anaerobic respiration.
    McCarthy JE; Ferguson SJ; Kell DB
    Biochem J; 1981 Apr; 196(1):311-21. PubMed ID: 7306073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of the proton motive force inhibitor carbonyl cyanide-m-chlorophenylhydrazone (CCCP) on Pseudomonas aeruginosa biofilm development.
    Ikonomidis A; Tsakris A; Kanellopoulou M; Maniatis AN; Pournaras S
    Lett Appl Microbiol; 2008 Oct; 47(4):298-302. PubMed ID: 19241523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.
    Bamforth CW; Quayle JR
    Arch Microbiol; 1978 Oct; 119(1):91-7. PubMed ID: 718372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Respiratory inhibitors activate an Fnr-like regulatory protein in Paracoccus denitrificans: implications for the regulation of the denitrification pathway.
    Kucera I; Matchová I; Spiro S
    Biochem Mol Biol Int; 1994 Feb; 32(2):245-50. PubMed ID: 8019429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.