These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 6777643)
21. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. Nguyen AD; Kim D; Lee EY BMC Genomics; 2019 Feb; 20(1):130. PubMed ID: 30755173 [TBL] [Abstract][Full Text] [Related]
22. [Nomenclature of obligate methylotrophs]. Romanovskaia VA Mikrobiologiia; 1978; 47(6):1063-72. PubMed ID: 106220 [TBL] [Abstract][Full Text] [Related]
23. Serine-glyoxylate aminotranferases from methanotrophs using different C1-assimilation pathways. But SY; Egorova SV; Khmelenina VN; Trotsenko YA Antonie Van Leeuwenhoek; 2019 May; 112(5):741-751. PubMed ID: 30511326 [TBL] [Abstract][Full Text] [Related]
24. [Comparative study of the growth parameters of methanotropic bacteria]. Nesterov AI; Mshenskiĭ IuN; Gal'chenko VF; Namsaraev BB; Il'chenko VIa Mikrobiologiia; 1977; 46(1):10-4. PubMed ID: 870796 [TBL] [Abstract][Full Text] [Related]
25. [Enzymatic determination of the autotrophic fixation of carbon dioxide in aerobic and anaerobic ecosystems]. Vedenina IIa; Zavarzin GA Mikrobiologiia; 1975; 44(5):943-5. PubMed ID: 1207512 [TBL] [Abstract][Full Text] [Related]
26. [Assimilation of carbon dioxide and oxidation of methane in various zones of the Rainbow hyperthermophilic field zones]. Pimenov NV; Lein AIu; Sagalevich AM; Ivanov MV Mikrobiologiia; 2000; 69(6):810-8. PubMed ID: 11195582 [TBL] [Abstract][Full Text] [Related]
27. [Comparative characteristics of the enzymatic systems of methane-utilizing bacteria that oxidize NH2OH and CH3OH]. Sokolov IG; Romanovskaia VA; Shkurko IuV; Malashenko IuR Mikrobiologiia; 1980; 49(2):202-9. PubMed ID: 6771495 [TBL] [Abstract][Full Text] [Related]
28. Methane cycling in lake sediments and its influence on chironomid larval delta13C. Eller G; Deines P; Grey J; Richnow HH; Krüger M FEMS Microbiol Ecol; 2005 Nov; 54(3):339-50. PubMed ID: 16332332 [TBL] [Abstract][Full Text] [Related]
29. Microbial methane oxidation in the River Saar. Zaiss U; Winter P; Kaltwasser H Z Allg Mikrobiol; 1982; 22(2):139-48. PubMed ID: 6806998 [TBL] [Abstract][Full Text] [Related]
30. Alternative carboxylation reactions in type II methylotrophs and the localization of carboxylase activities in the intra-cytoplasmic membranes. Naguib M Z Allg Mikrobiol; 1979; 19(5):333-42. PubMed ID: 120638 [TBL] [Abstract][Full Text] [Related]
31. Bacterial yields on methanol, methylamine, formaldehyde, and formate. Goldberg I; Rock JS; Ben-Bassat A; Mateles RI Biotechnol Bioeng; 1976 Dec; 18(12):1657-68. PubMed ID: 990435 [TBL] [Abstract][Full Text] [Related]
32. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Yurimoto H; Kato N; Sakai Y Chem Rec; 2005; 5(6):367-75. PubMed ID: 16278835 [TBL] [Abstract][Full Text] [Related]
33. Hydrogenase activity in nitrogen-fixing methane-oxidizing bacteria. Bont JA Antonie Van Leeuwenhoek; 1976; 42(3):255-9. PubMed ID: 825038 [TBL] [Abstract][Full Text] [Related]
34. Methane-oxidizing bacteria in fresh waters. 3. The capacity of methane utilization by methane-oxidizing enrichment cultures as revealed by gas chromatographic analyses. Naguib M Z Allg Mikrobiol; 1971; 11(1):39-47. PubMed ID: 5557059 [No Abstract] [Full Text] [Related]
35. [The biology of bacteria that assimilate C1--C2 compounds and the biotechnology aspects of their use]. Malashenko IuP; Romanovskaia VA; Sokolov IG; Grinberg TA; Pirog TP; Muchnik FV Mikrobiol Z; 1998; 60(6):38-55. PubMed ID: 10077958 [TBL] [Abstract][Full Text] [Related]
36. [Transformation of substrates not used for growth by the immobilized methane-oxidizing bacteria]. Sokolov IG; Malashenko IuR; Karpenko VI; Kryshtab Ukr Biokhim Zh (1978); 1979; 51(4):393-9. PubMed ID: 473389 [TBL] [Abstract][Full Text] [Related]
37. [Mine effluents as a nutrient culture base for methane-oxidizing bacteria in the microbiological method of decreasing the methane content of coal]. Kurdish IK; Khenkina LM; Bavina EN; Malashenko IuR Mikrobiol Zh (1978); 1980; 42(4):420-7. PubMed ID: 6447831 [No Abstract] [Full Text] [Related]
38. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials. Ganendra G; De Muynck W; Ho A; Hoefman S; De Vos P; Boeckx P; Boon N Appl Microbiol Biotechnol; 2014 Apr; 98(8):3791-800. PubMed ID: 24337222 [TBL] [Abstract][Full Text] [Related]