These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6777816)

  • 1. The influence of external sodium and potassium on lithium uptake by primary brain cell cultures at "therapeutic" lithium concentration.
    Janka Z; Szentistvanyi I; Rimanoczy A; Juhasz A
    Psychopharmacology (Berl); 1980; 71(2):159-63. PubMed ID: 6777816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na-dependent Li-transport in primary nerve cell cultures.
    Szentistványi I; Janka Z; Joó F; Rimanóczy A; Juhász A; Latzkovits L
    Neurosci Lett; 1979 Jul; 13(2):157-61. PubMed ID: 575197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further evidence for a potassium-like action of lithium ions on sodium efflux in frog skeletal muscle.
    Beaugé LA; Ortiz O
    J Physiol; 1972 Nov; 226(3):675-97. PubMed ID: 4637626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state distribution of lithium during cultivation of dissociated brain cells.
    Janka Z; Szentistványi I; Juhász A; Rimanóczy A
    Experientia; 1980 Sep; 36(9):1071-2. PubMed ID: 7418842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells.
    Barry WH; Hasin Y; Smith TW
    Circ Res; 1985 Feb; 56(2):231-41. PubMed ID: 2578900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport pathways for lithium ions in neuroblastoma x glioma hybrid cells at 'therapeutic' concentrations of Li+.
    Reiser G; Duhm J
    Brain Res; 1982 Dec; 252(2):247-58. PubMed ID: 7150952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of lithium and sodium transports in primary cultures of dissociated brain cells.
    Szentistványi I; Janka Z; Rimanóczy A; Latzkovits L; Juhász A
    Cell Mol Biol Incl Cyto Enzymol; 1979; 25(5):315-21. PubMed ID: 535007
    [No Abstract]   [Full Text] [Related]  

  • 8. Nuclear magnetic resonance studies of intracellular ions in perfused frog heart.
    Burstein D; Fossel ET
    Am J Physiol; 1987 Jun; 252(6 Pt 2):H1138-46. PubMed ID: 3496012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Dependence of ion transport across the plasma membrane on cell culture density. II. Active and passive cation transport during the growth of L cell cultures].
    Marakhova II; Sal'nikov KV; Vinogradova TA
    Tsitologiia; 1985 Oct; 27(10):1156-63. PubMed ID: 2416101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-sensitive cellular and subcellular transport of sodium, potassium, magnesium, and calcium in sodium-loaded vascular smooth muscle. Electron probe analysis.
    Wasserman AJ; McClellan G; Somlyo AP
    Circ Res; 1986 Jun; 58(6):790-802. PubMed ID: 3719929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cation transport and content in serum-stimulated CHO-773 cells. I. Rapid changes in rubidium and lithium influxes and intracellular sodium content].
    Marakhova II; Efimova EV; Vinogradova TA
    Tsitologiia; 1987 Jan; 29(1):59-65. PubMed ID: 2436368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons.
    Baker PF; Blaustein MP; Keynes RD; Manil J; Shaw TI; Steinhardt RA
    J Physiol; 1969 Feb; 200(2):459-96. PubMed ID: 5812424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Li/Na exchange and Li active transport in human lymphoid cells U937 cultured in lithium media].
    Iurinskaia VE; Moshkov AV; Goriachaia TS; Vereninov AA
    Tsitologiia; 2013; 55(10):703-12. PubMed ID: 25509124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of growth in low potassium medium or ouabain on membrane Na,K-ATPase, cation transport, and contractility in cultured chick heart cells.
    Kim D; Marsh JD; Barry WH; Smith TW
    Circ Res; 1984 Jul; 55(1):39-48. PubMed ID: 6086172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of insulin on the transport of sodium and potassium in rat soleus muscle.
    Clausen T; Kohn PG
    J Physiol; 1977 Feb; 265(1):19-42. PubMed ID: 850160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory interaction of ATP Na+ and Cl- in the turnover cycle of the NaK2Cl cotransporter.
    Whisenant N; Khademazad M; Muallem S
    J Gen Physiol; 1993 Jun; 101(6):889-908. PubMed ID: 8392531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of ion metabolism in reaggregated brain cell cultures.
    Marks MJ; Seeds NW
    J Neurochem; 1982 Jan; 38(1):101-11. PubMed ID: 6286876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulatory (insulin-mimetic) and inhibitory (ouabain-like) action of vanadate on potassium uptake and cellular sodium and potassium in heart cells in culture.
    Werdan K; Bauriedel G; Fischer B; Krawietz W; Erdmann E; Schmitz W; Scholz H
    Biochim Biophys Acta; 1982 Apr; 687(1):79-93. PubMed ID: 6280766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of calcium on sodium efflux in squid axons.
    Baker PF; Blaustein MP; Hodgkin AL; Steinhardt RA
    J Physiol; 1969 Feb; 200(2):431-58. PubMed ID: 5764407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strophanthidin-sensitive components of potassium and sodium movements in skeletal muscle as influenced by the internal sodium concentration.
    Sjodin RA; Beaugé LA
    J Gen Physiol; 1968 Sep; 52(3):389-407. PubMed ID: 5673300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.