These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 6778505)
1. Changes in membrane potential and membrane fluidity in Tetrahymena pyriformis in association with chemoreception of hydrophobic stimuli: fluorescence studies. Tanabe H; Kurihara K; Kobatake Y Biochemistry; 1980 Nov; 19(23):5339-44. PubMed ID: 6778505 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence changes of rhodamine 6G associated with chemotactic responses in Tetrahymena pyriformis. Aiuchi T; Tanabe H; Kurihara K; Kobatake Y Biochim Biophys Acta; 1980 Mar; 628(3):355-64. PubMed ID: 6768401 [No Abstract] [Full Text] [Related]
3. Cell suspensions from porcine olfactory mucosa. Changes in membrane potential and membrane fluidity in response to various odorants. Kashiwayanagi M; Sai K; Kurihara K J Gen Physiol; 1987 Mar; 89(3):443-57. PubMed ID: 3559517 [TBL] [Abstract][Full Text] [Related]
4. Effects of lindane on membrane fluidity: intramolecular excimerization of a pyrene derivative and polarization of diphenylhexatriene. Antunes-Madeira MC; Almeida LM; Madeira VM Biochim Biophys Acta; 1990 Feb; 1022(1):110-4. PubMed ID: 1689182 [TBL] [Abstract][Full Text] [Related]
5. Modulation of membrane fluidity in the primate (Macaca mulatta) corpus luteum: correlation with changes in gonadotropin binding. Danforth DR; Wells MA; Stouffer RL Endocrinology; 1985 Aug; 117(2):755-61. PubMed ID: 2990861 [TBL] [Abstract][Full Text] [Related]
6. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. II. Preferential interaction of cardiolipin with specific molecular species of phospholipid. Ohki K; Goto M; Nozawa Y Biochim Biophys Acta; 1984 Feb; 769(3):563-70. PubMed ID: 6421321 [TBL] [Abstract][Full Text] [Related]
7. Liposomes as a model for olfactory cells: changes in membrane potential in response to various odorants. Nomura T; Kurihara K Biochemistry; 1987 Sep; 26(19):6135-40. PubMed ID: 3689767 [TBL] [Abstract][Full Text] [Related]
8. Endotoxin protects against hyperoxic decrease in membrane fluidity in endothelial cells but not in fibroblasts. Block ER; Patel JM; Sheridan NP Lab Invest; 1986 Feb; 54(2):146-53. PubMed ID: 3511321 [TBL] [Abstract][Full Text] [Related]
9. Effects of alcohols on fluorescence anisotropies of diphenylhexatriene and its derivatives in bovine blood platelets: relationships of the depth-dependent change in membrane fluidity by alcohols with their effects on platelet aggregation and adenylate cyclase activity. Kitagawa S; Hirata H Biochim Biophys Acta; 1992 Nov; 1112(1):14-8. PubMed ID: 1329963 [TBL] [Abstract][Full Text] [Related]
10. A decrease of lipid fluidity of the porcine intestinal brush-border membranes by treatment with malondialdehyde. Ohyashiki T; Sakata N; Matsui K J Biochem; 1992 Mar; 111(3):419-23. PubMed ID: 1587807 [TBL] [Abstract][Full Text] [Related]
11. Hydrophobicity of biosurfaces as shown by chemoreceptive thresholds in Tetrahymena, Physarum and Nitella. Ueda T; Kobatake Y J Membr Biol; 1977 Jun; 34(4):351-68. PubMed ID: 407361 [TBL] [Abstract][Full Text] [Related]
12. Study of platelet membrane proteins through fluorescence polarization of diphenyl hexatriene. Mely-Goubert B; Calvo F; Rosenfeld C Biomedicine; 1979 Oct; 31(6):155-6. PubMed ID: 526534 [TBL] [Abstract][Full Text] [Related]
13. Disaccharide modulation of the mitochondrial membrane fluidity changes induced by the membrane potential. Ricchelli F; Camerin M; Beghetto C; Crisma M; Moretto V; Gobbo S; Salvato B; Salet C; Moreno G IUBMB Life; 2001 Feb; 51(2):111-6. PubMed ID: 11463162 [TBL] [Abstract][Full Text] [Related]
14. 1,6-Diphenyl-1,3,5-hexatrine as a reporter of inner spore membrane fluidity in Bacillus subtilis and Alicyclobacillus acidoterrestris. Voss D; Montville TJ J Microbiol Methods; 2014 Jan; 96():101-3. PubMed ID: 24280194 [TBL] [Abstract][Full Text] [Related]
15. Profile of changes in lipid bilayer structure caused by beta-amyloid peptide. Kremer JJ; Sklansky DJ; Murphy RM Biochemistry; 2001 Jul; 40(29):8563-71. PubMed ID: 11456496 [TBL] [Abstract][Full Text] [Related]
16. Change of synaptic membrane lipid composition and fluidity by chronic administration of lithium. López-Corcuera B; Giménez C; Aragón C Biochim Biophys Acta; 1988 Apr; 939(3):467-75. PubMed ID: 2833309 [TBL] [Abstract][Full Text] [Related]
17. Sensitization of chemotactic response by changing the lipid composition of surface membrane in Tetrahymena pyriformis. Tanabe H; Kurihara K; Kobatake Y Biochim Biophys Acta; 1979 Jun; 553(3):396-403. PubMed ID: 110345 [No Abstract] [Full Text] [Related]
18. Changes in lipid fluidity and fatty acid composition with altered culture temperature in Tetrahymena pyriformis-NT1. Connolly JG; Brown ID; Lee AG; Kerkut GA Comp Biochem Physiol A Comp Physiol; 1985; 81(2):287-92. PubMed ID: 2864170 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence anisotropy analysis of the mechanism of action of mesenterocin 52A: speculations on antimicrobial mechanism. Jasniewski J; Cailliez-Grimal C; Younsi M; Millière JB; Revol-Junelles AM Appl Microbiol Biotechnol; 2008 Nov; 81(2):339-47. PubMed ID: 18784922 [TBL] [Abstract][Full Text] [Related]
20. The dynamics of lipid motion in sarcoplasmic reticulum membranes determined by steady-state and time-resolved fluorescence measurements on 1,6-diphenyl-1,3,5-hexatriene and related molecules. Stubbs CD; Kinosita K; Munkonge F; Quinn PJ; Ikegami A Biochim Biophys Acta; 1984 Sep; 775(3):374-80. PubMed ID: 6466678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]