These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 6778974)

  • 21. Stimulation-evoked saccades from the dorsomedial frontal cortex of the rhesus monkey following lesions of the frontal eye fields and superior colliculus.
    Tehovnik EJ; Lee K; Schiller PH
    Exp Brain Res; 1994; 98(2):179-90. PubMed ID: 8050505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of short-term saccadic adaptation on saccades evoked by electrical stimulation in the primate superior colliculus.
    Edelman JA; Goldberg ME
    J Neurophysiol; 2002 Apr; 87(4):1915-23. PubMed ID: 11929911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of the frontal eye field and superior colliculus for saccade generation.
    Hanes DP; Wurtz RH
    J Neurophysiol; 2001 Feb; 85(2):804-15. PubMed ID: 11160514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Apr; 83(4):1979-2001. PubMed ID: 10758109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map.
    Hepp K; Van Opstal AJ; Straumann D; Hess BJ; Henn V
    J Neurophysiol; 1993 Mar; 69(3):965-79. PubMed ID: 8385203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of eye position on saccades evoked electrically from superior colliculus of alert cats.
    McIlwain JT
    J Neurophysiol; 1986 Jan; 55(1):97-112. PubMed ID: 3512789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Causal Role of Neural Signals Transmitted From the Frontal Eye Field to the Superior Colliculus in Saccade Generation.
    Matsumoto M; Inoue KI; Takada M
    Front Neural Circuits; 2018; 12():69. PubMed ID: 30210307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge.
    Munoz DP; Wurtz RH
    J Neurophysiol; 1993 Aug; 70(2):559-75. PubMed ID: 8410157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1381-402. PubMed ID: 14573558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus.
    Munoz DP; Istvan PJ
    J Neurophysiol; 1998 Mar; 79(3):1193-209. PubMed ID: 9497401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery of saccadic dysmetria following localized lesions in monkey superior colliculus.
    Hanes DP; Smith MK; Optican LM; Wurtz RH
    Exp Brain Res; 2005 Jan; 160(3):312-25. PubMed ID: 15448959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bilateral lesions of the medial longitudinal fasciculus in monkeys: effects on the horizontal and vertical components of voluntary and vestibular induced eye movements.
    Evinger LC; Fuchs AF; Baker R
    Exp Brain Res; 1977 May; 28(1-2):1-20. PubMed ID: 407093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades.
    Dias EC; Segraves MA
    J Neurophysiol; 1999 May; 81(5):2191-214. PubMed ID: 10322059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site of interaction between saccade signals and vestibular signals induced by head rotation in the alert cat: functional properties and afferent organization of burster-driving neurons.
    Kitama T; Ohki Y; Shimazu H; Tanaka M; Yoshida K
    J Neurophysiol; 1995 Jul; 74(1):273-87. PubMed ID: 7472330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.
    Paré M; Guitton D
    J Neurophysiol; 1998 Jun; 79(6):3060-76. PubMed ID: 9636108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociation of visual and saccade-related responses in superior colliculus neurons.
    Mays LE; Sparks DL
    J Neurophysiol; 1980 Jan; 43(1):207-32. PubMed ID: 6766178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Saccades induced by stimulation of the frontal eye fields: interaction with voluntary and reflexive eye movements.
    Marrocco RT
    Brain Res; 1978 May; 146(1):23-34. PubMed ID: 417755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal control of fixation and fixational eye movements.
    Krauzlis RJ; Goffart L; Hafed ZM
    Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1718):. PubMed ID: 28242738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Saccadic disorders caused by cooling the superior colliculus or the frontal eye field, or from combined lesions of both structures.
    Keating EG; Gooley SG
    Brain Res; 1988 Jan; 438(1-2):247-55. PubMed ID: 3345431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of visual responses in monkey striate cortex and frontal eye fields.
    Wurtz RH; Mohler CW
    J Neurophysiol; 1976 Jul; 39(4):766-72. PubMed ID: 823304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.