These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 6779861)
1. Effects of growth at different temperatures on the physical state of lipids in native microsomal membranes from Tetrahymena. Dickens BF; Thompson GA Biochemistry; 1980 Oct; 19(22):5029-37. PubMed ID: 6779861 [TBL] [Abstract][Full Text] [Related]
2. Discontinuous thermotropic response of Tetrahymena membrane lipids correlated with specific lipid compositional changes. Dickens BF; Martin CE; King GP; Turner JS; Thompson GA Biochim Biophys Acta; 1980 May; 598(2):217-36. PubMed ID: 6769483 [TBL] [Abstract][Full Text] [Related]
3. Rapid membrane response during low-temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes. Dickens BF; Thompson GA Biochim Biophys Acta; 1981 Jun; 644(2):211-8. PubMed ID: 6789874 [TBL] [Abstract][Full Text] [Related]
4. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. II. Preferential interaction of cardiolipin with specific molecular species of phospholipid. Ohki K; Goto M; Nozawa Y Biochim Biophys Acta; 1984 Feb; 769(3):563-70. PubMed ID: 6421321 [TBL] [Abstract][Full Text] [Related]
5. Rotational relaxation of 1,6-diphenylhexatriene in membrane lipids of cells acclimated to high and low growth temperatures. Martin CE; Foyt DC Biochemistry; 1978 Aug; 17(17):3587-91. PubMed ID: 99168 [TBL] [Abstract][Full Text] [Related]
6. An X-ray diffraction study on phase transition temperatures of various membranes isolated from Tetrahymena pyriformis cells grown at different temperatures. Nakayama H; Goto M; Ohki K; Mitsui T; Nozawa Y Biochim Biophys Acta; 1983 Apr; 730(1):17-24. PubMed ID: 6403032 [TBL] [Abstract][Full Text] [Related]
7. Thermally induced heterogeneity in microsomal membranes of fatty acid-supplemented Tetrahymena: lipid composition, fluidity and enzyme activity. Kameyama Y; Ohki K; Nozawa Y J Biochem; 1980 Nov; 88(5):1291-303. PubMed ID: 6780538 [TBL] [Abstract][Full Text] [Related]
8. Use of fluorescence polarization to monitor intracellular membrane changes during temperature acclimation. Correlation with lipid compositional and ultrastructural changes. Martin CE; Thompson GA Biochemistry; 1978 Aug; 17(17):3581-6. PubMed ID: 99167 [TBL] [Abstract][Full Text] [Related]
9. Temperature-dependent changes in plasma-membrane lipid order and the phagocytotic activity of the amoeba Acanthamoeba castellanii are closely correlated. Avery SV; Lloyd D; Harwood JL Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):811-6. PubMed ID: 8554525 [TBL] [Abstract][Full Text] [Related]
11. Changes in thermal phase transition of various membranes during temperature acclimation in Tetrahymena. Nakayama H; Ohki K; Mitsui T; Nozawa Y Biochim Biophys Acta; 1984 Jan; 769(2):311-6. PubMed ID: 6320873 [TBL] [Abstract][Full Text] [Related]
12. Dynamic structure of bovine adrenal cortex microsomal membranes studied by time-resolved fluorescence anisotropy of all-trans-1,6-diphenyl-1,3,5-hexatriene. Gallay J; Vincent M; Alfsen A J Biol Chem; 1982 Apr; 257(8):4038-41. PubMed ID: 7068623 [TBL] [Abstract][Full Text] [Related]
13. Temperature-induced vertical shift of proteins in membranes. Funk J; Wunderlich F; Kreutz W J Mol Biol; 1982 Nov; 161(4):561-77. PubMed ID: 6818355 [TBL] [Abstract][Full Text] [Related]
14. The influence of fatty acid unsaturation and physical properties of microsomal membrane phospholipids on UDP-glucuronyltransferase activity. Castuma CE; Brenner RR Biochem J; 1989 Mar; 258(3):723-31. PubMed ID: 2499306 [TBL] [Abstract][Full Text] [Related]
15. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids. Connolly JG; Brown ID; Lee AG; Kerkut GA Comp Biochem Physiol A Comp Physiol; 1985; 81(2):303-10. PubMed ID: 2864172 [TBL] [Abstract][Full Text] [Related]
16. Age-dependent modifications in membrane lipids: lipid composition, fluidity and palmitoyl-CoA desaturase in Tetrahymena membranes. Nozawa Y; Kasai R; Kameyama Y; Ohki K Biochim Biophys Acta; 1980 Jun; 599(1):232-45. PubMed ID: 6104984 [TBL] [Abstract][Full Text] [Related]
18. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. Role of cardiolipin in fluidity of mitochondrial membranes. Yamauchi T; Ohki K; Maruyama H; Nozawa Y Biochim Biophys Acta; 1981 Dec; 649(2):385-92. PubMed ID: 6797472 [TBL] [Abstract][Full Text] [Related]
19. Dynamic structure of biological membranes as probed by 1,6-diphenyl-1,3,5-hexatriene: a nanosecond fluorescence depolarization study. Kinosita K; Kataoka R; Kimura Y; Gotoh O; Ikegami A Biochemistry; 1981 Jul; 20(15):4270-7. PubMed ID: 7284326 [TBL] [Abstract][Full Text] [Related]
20. Lipid dynamics and lipid-protein interactions in rat hepatocyte plasma membranes. Livingstone CJ; Schachter D J Biol Chem; 1980 Nov; 255(22):10902-8. PubMed ID: 7430161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]