These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6779862)

  • 1. Characterization of transferrin metal-binding sites by diffusion-enhanced energy transfer.
    Yeh SM; Meares CF
    Biochemistry; 1980 Oct; 19(22):5057-62. PubMed ID: 6779862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-enhanced lanthanide energy-transfer study of DNA-bound cobalt(III) bleomycins: comparisons of accessibility and electrostatic potential with DNA complexes of ethidium and acridine orange.
    Wensel TG; Chang CH; Meares CF
    Biochemistry; 1985 Jun; 24(12):3060-9. PubMed ID: 2410019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance between metal-binding sites in transferrin: energy transfer from bound terbium (III) to iron (III) or manganese (III).
    O'Hara P; Yeh SM; Meares CF; Bersohn R
    Biochemistry; 1981 Aug; 20(16):4704-8. PubMed ID: 7295641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer between terbium and iron bound to transferrin: reinvestigation of the distance between metal-binding sites.
    Meares CF; Ledbetter JE
    Biochemistry; 1977 Nov; 16(24):5178-80. PubMed ID: 921926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer between terbium (III) and cobalt (II) in thermolysin: a new class of metal--metal distance probes.
    Horrocks WD; Holmquist B; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4764-8. PubMed ID: 1061067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terbium chelation, a specific fluorescent tagging of human transferrin. Optimization of conditions in view of its application to the HPLC analysis of carbohydrate-deficient transferrin (CDT).
    Nicotra S; Sorio D; Filippi G; De Gioia L; Paterlini V; De Palo EF; Grandori R; Tagliaro F; Santambrogio C
    Anal Bioanal Chem; 2017 Nov; 409(28):6605-6612. PubMed ID: 28971232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion-enhanced energy transfer shows accessibility of ribonucleic acid polymerase inhibitor binding sites.
    Meares CF; Rice LS
    Biochemistry; 1981 Feb; 20(3):610-7. PubMed ID: 7011368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steric restrictions on the binding of large metal ions to serum transferrin.
    Harris WR; Yang B; Abdollahi S; Hamada Y
    J Inorg Biochem; 1999 Sep; 76(3-4):231-42. PubMed ID: 10605839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probes.
    Ka Luk C
    Biochemistry; 1971 Jul; 10(15):2838-43. PubMed ID: 5114527
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes.
    Young SP; Bomford A; Williams R
    Biochem J; 1984 Apr; 219(2):505-10. PubMed ID: 6743230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific rate constants for iron removal from diferric transferrin by nitrilotris(methylenephosphonic acid) and pyrophosphate.
    Bali PK; Harris WR
    Arch Biochem Biophys; 1990 Sep; 281(2):251-6. PubMed ID: 2168158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-enhanced energy transfer investigation of histone H5 in chromatin with a fluorescently-labelled antibody fragment Fab'.
    Sarlet G; Muller S; Houssier C
    J Biomol Struct Dyn; 1992 Aug; 10(1):35-47. PubMed ID: 1418745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementary Mössbauer and EPR studies of iron(III) in diferric human serum transferrin with oxalate or bicarbonate as synergistic anions.
    Seidel A; Bill E; Häggström L; Nordblad P; Kilár F
    Arch Biochem Biophys; 1994 Jan; 308(1):52-63. PubMed ID: 8311474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large cooperativity in the removal of iron from transferrin at physiological temperature and chloride ion concentration.
    Hamilton DH; Turcot I; Stintzi A; Raymond KN
    J Biol Inorg Chem; 2004 Dec; 9(8):936-44. PubMed ID: 15517438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence and kinetic properties of Ru(III) (NH3)5 modified transferrin.
    Martin DM; Chasteen ND; Grady JK
    Biochim Biophys Acta; 1991 Jan; 1076(2):252-8. PubMed ID: 1998724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of anions with iron-transferrin-chelate complexes.
    Rogers TB; Feeney RE; Meares CF
    J Biol Chem; 1977 Nov; 252(22):8108-12. PubMed ID: 410811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of iron from the two iron-binding sites of transferrin by cultured human cells: modulation by methylamine.
    Bomford A; Young SP; Williams R
    Biochemistry; 1985 Jul; 24(14):3472-8. PubMed ID: 3862428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion-enhanced fluorescence energy transfer.
    Stryer L; Thomas DD; Meares CF
    Annu Rev Biophys Bioeng; 1982; 11():203-22. PubMed ID: 7049062
    [No Abstract]   [Full Text] [Related]  

  • 19. Oxalate and spin-labeled oxalate as probes of the anion binding site of human transferrin. Metal to anion distance.
    Najarian RC; Harris DC
    J Biol Chem; 1978 Jan; 253(1):38-42. PubMed ID: 22546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of synergistic and non-synergistic anions on the iron binding site from serum transferrin: A molecular dynamic simulation analysis.
    Ghanbari Z; Housaindokht MR; Bozorgmehr MR; Izadyar M
    J Mol Graph Model; 2017 Nov; 78():176-186. PubMed ID: 29073555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.