These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 678011)
1. Regulatory properties of the nitrogenase from Rhodopseudomonas palustris. Zumft WG; Castillo F Arch Microbiol; 1978 Apr; 117(1):53-60. PubMed ID: 678011 [TBL] [Abstract][Full Text] [Related]
2. L-methionine-SR-sulfoximine as a probe for the role of glutamine synthetase in nitrogenase switch-off by ammonia and glutamine in Rhodopseudomonas palustris. Arp DJ; Zumft WG Arch Microbiol; 1983 Jan; 134(1):17-22. PubMed ID: 6135404 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen fixation and ammonia switch-off in the photosynthetic bacterium Rhodopseudomonas viridis. Howard KS; Hales BJ; Socolofsky MD J Bacteriol; 1983 Jul; 155(1):107-12. PubMed ID: 6305906 [TBL] [Abstract][Full Text] [Related]
4. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene. Fisher K; Dilworth MJ; Kim CH; Newton WE Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117 [TBL] [Abstract][Full Text] [Related]
5. [Nitrogenase and hydrogenase activities of the non-sulfur purple bacteria, Rhodopseudomonas spheroides and Rhodopseudomonas capsulata]. Serebriakova LT; Teslia EA; Gogotov IN; Kondrat'eva EN Mikrobiologiia; 1980; 49(3):401-7. PubMed ID: 6995815 [TBL] [Abstract][Full Text] [Related]
6. Nitrogenase in synchronized Azotobacter vinelandii OP. Kurz WG; LaRue TA; Chatson KB Can J Microbiol; 1975 Jul; 21(7):984-8. PubMed ID: 1148949 [TBL] [Abstract][Full Text] [Related]
7. How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Heiniger EK; Oda Y; Samanta SK; Harwood CS Appl Environ Microbiol; 2012 Feb; 78(4):1023-32. PubMed ID: 22179236 [TBL] [Abstract][Full Text] [Related]
8. Overproduction of nitrogenase by nitrogen-limited cultures of Rhodopseudomonas palustris. Arp DJ; Zumft WG J Bacteriol; 1983 Mar; 153(3):1322-30. PubMed ID: 6402491 [TBL] [Abstract][Full Text] [Related]
9. Quantitative relations for the repression of nitrogenase synthesis in Azotobacter vinelandii by ammonia. Kleiner D Arch Microbiol; 1974; 101(2):153-9. PubMed ID: 4447428 [No Abstract] [Full Text] [Related]
10. Mechanism of nitrogenase switch-off by oxygen. Goldberg I; Nadler V; Hochman A J Bacteriol; 1987 Feb; 169(2):874-9. PubMed ID: 3542974 [TBL] [Abstract][Full Text] [Related]
11. Cyanide reduction by nitrogenase in intact cells of Rhodopseudomonas gelatinose Molisch. Materassi R; Balloni W; Florenzano G Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(5-6):413-7. PubMed ID: 602470 [TBL] [Abstract][Full Text] [Related]
12. Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: inactivation of nitrogen fixation by ammonia, L-glutamine and L-asparagine. Neilson AH; Nordlund S J Gen Microbiol; 1975 Nov; 91(1):53-62. PubMed ID: 811763 [TBL] [Abstract][Full Text] [Related]
13. Nitrogenase from the photosynthetic bacterium Rhodopseudomonas capsulata: purification and molecular properties. Hallenbeck PC; Meyer CM; Vignais PM J Bacteriol; 1982 Feb; 149(2):708-17. PubMed ID: 6799495 [TBL] [Abstract][Full Text] [Related]
14. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. Hillmer P; Gest H J Bacteriol; 1977 Feb; 129(2):732-9. PubMed ID: 838686 [TBL] [Abstract][Full Text] [Related]
15. Regulation of nitrogenase A and R concentrations in Rhodopseudomonas capsulata by glutamine synthetase. Yoch DC Biochem J; 1980 Apr; 187(1):273-6. PubMed ID: 6105870 [TBL] [Abstract][Full Text] [Related]
16. H2 metabolism in photosynthetic bacteria and relationship to N2 fixation. Willison JC; Jouanneau Y; Colbeau A; Vignais PM Ann Microbiol (Paris); 1983; 134B(1):115-35. PubMed ID: 6139053 [TBL] [Abstract][Full Text] [Related]
17. Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-. Fisher K; Dilworth MJ; Kim CH; Newton WE Biochemistry; 2000 Sep; 39(35):10855-65. PubMed ID: 10978172 [TBL] [Abstract][Full Text] [Related]
18. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN; Fisher K; Seefeldt LC Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547 [TBL] [Abstract][Full Text] [Related]
19. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]