BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6780266)

  • 1. The effect of continuous positive airway pressure on the course of respiratory distress syndrome: the benefits on early initiation.
    Hegyi T; Hiatt IM
    Crit Care Med; 1981 Jan; 9(1):38-41. PubMed ID: 6780266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of surfactant therapy in infants managed with CPAP.
    Alba J; Agarwal R; Hegyi T; Hiatt IM
    Pediatr Pulmonol; 1995 Sep; 20(3):172-6. PubMed ID: 8545169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The early use of continuous positive airway pressure in the treatment of idiopathic respiratory distress syndrome.
    Krouskop RW; Brown EG; Sweet AY
    J Pediatr; 1975 Aug; 87(2):263-7. PubMed ID: 1097619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcutaneous PO2 monitoring during treatment with continuous positive airway pressure in infants with idiopathic respiratory distress syndrome.
    Kamper J; Nielsen G; Erichsen G; Filtenborg JA; Lillquist K; Pedersen VF; Skjoldå J; Stabell I
    Acta Anaesthesiol Scand; 1983 Feb; 27(1):1-4. PubMed ID: 6340404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discontinuation of continuous positive airways pressure in infants with respiratory distress syndrome.
    Hegyi T; Hiatt IM
    Arch Dis Child; 1979 Sep; 54(9):722-4. PubMed ID: 391160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of continuous positive airway pressure breathing on cardiorespiratory function in infants with respiratory distress syndrome.
    Yu VY; Rolfe P
    Acta Paediatr Scand; 1977 Jan; 66(1):59-64. PubMed ID: 12647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional residual capacity and severity of respiratory distress syndrome in infants.
    Richardson P; Wyman ML; Jung AL
    Crit Care Med; 1980 Nov; 8(11):637-40. PubMed ID: 6775874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early versus late introduction of continuous negative pressure in the management of the idiopathic respiratory distress syndrome.
    Gerard P; Fox WW; Outerbridge EW; Beaudry PH
    J Pediatr; 1975 Oct; 87(4):591-5. PubMed ID: 1099184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early treatment of idiopathic respiratory distress syndrome using binasal continuous positive airway pressure.
    Kamper J; Ringsted C
    Acta Paediatr Scand; 1990; 79(6-7):581-6. PubMed ID: 2201166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nasal continuous positive airway pressure following surfactant replacement for the treatment of neonatal respiratory distress syndrome.
    So BH; Tamura M; Kamoshita S
    Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi; 1994; 35(4):280-7. PubMed ID: 8085448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of optimal continuous positive airway pressure for the treatment of IRDS by measurement of esophageal pressure.
    Bonta BW; Uauy R; Warshaw JB; Motoyama EK
    J Pediatr; 1977 Sep; 91(3):449-54. PubMed ID: 330831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nasal continuous positive airway pressure (CPAP) versus bi-level nasal CPAP in preterm babies with respiratory distress syndrome: a randomised control trial.
    Lista G; Castoldi F; Fontana P; Daniele I; Cavigioli F; Rossi S; Mancuso D; Reali R
    Arch Dis Child Fetal Neonatal Ed; 2010 Mar; 95(2):F85-9. PubMed ID: 19948523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A randomized controlled trial of post-extubation bubble continuous positive airway pressure versus Infant Flow Driver continuous positive airway pressure in preterm infants with respiratory distress syndrome.
    Gupta S; Sinha SK; Tin W; Donn SM
    J Pediatr; 2009 May; 154(5):645-50. PubMed ID: 19230906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-level CPAP does not improve gas exchange when compared with conventional CPAP for the treatment of neonates recovering from respiratory distress syndrome.
    Lampland AL; Plumm B; Worwa C; Meyers P; Mammel MC
    Arch Dis Child Fetal Neonatal Ed; 2015 Jan; 100(1):F31-4. PubMed ID: 25085943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracheal gas insufflation-augmented continuous positive airway pressure in a spontaneously breathing model of neonatal respiratory distress.
    Miller TL; Blackson TJ; Shaffer TH; Touch SM
    Pediatr Pulmonol; 2004 Nov; 38(5):386-95. PubMed ID: 15390348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of nasal CPAP in newborns with respiratory distress syndrome.
    Schmid ER; Dangel PH; Duc GV
    Eur J Intensive Care Med; 1976 Nov; 2(3):125-30. PubMed ID: 791651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of continuous positive airway pressure on pulmonary function and blood gases of infants with respiratory distress syndrome.
    Richardson CP; Jung AL
    Pediatr Res; 1978 Jul; 12(7):771-4. PubMed ID: 358112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nasal Jet-CPAP (variable flow) versus Bubble-CPAP in preterm infants with respiratory distress: an open label, randomized controlled trial.
    Bhatti A; Khan J; Murki S; Sundaram V; Saini SS; Kumar P
    J Perinatol; 2015 Nov; 35(11):935-40. PubMed ID: 26270255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pneumothorax and pneumomediastinum in infants with idiopathic respiratory distress syndrome receiving continuous positive airway pressure.
    Hall RT; Rhodes PG
    Pediatrics; 1975 Apr; 55(4):493-6. PubMed ID: 236534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pneumothorax in the respiratory distress syndrome: incidence and effect on vital signs, blood gases, and pH.
    Ogata ES; Gregory GA; Kitterman JA; Phibbs RH; Tooley WH
    Pediatrics; 1976 Aug; 58(2):177-83. PubMed ID: 7768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.